New megapodagrionid damselflies (Odonata: Zygoptera) from the Paleogene of Europe

2008 ◽  
Vol 82 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Julián F. Petrulevičius ◽  
Torsten Wappler ◽  
Sonja Wedmann ◽  
Jes Rust ◽  
Andre Nel

Three fossil taxa of megapodagrionid damselflies are described and figured from the Paleogene localities in Europe on the basis of isolated wings. Eckfeldia superstes (Wappler, 2003) gen. nov. is described from the laminated mudstones of middle Eocene age from Eckfeld Maar, Germany. Furagrion jutlandicus (Henriksen, 1922) gen. nov. is recorded from the laminated claystones of lowermost Eocene age from the Ølst and Fur-Formation, Denmark, and an undetermined megapodagrionid damselfly is recognized from middle Eocene strata. Taphonomy and color preservation in the fossils are briefly considered. Characters used for phylogenetic analyses in extant and fossil Megapodagrionidae are discussed. The biogeographic and paleoecological implications of the new European fossils are briefly discussed.

Author(s):  
Krister T. SMITH ◽  
Jörg HABERSETZER

The evolution and interrelationships of carnivorous squamates (mosasaurs, snakes, monitor lizards, Gila Monsters) are a contentious part of reptile systematics and go to the heart of conflict between morphological and molecular data in inferring evolutionary history. One of the best-preserved fossils in this motley grouping is “Saniwa” feisti Stritzke, 1983, represented by complete skeletons from the early-middle Eocene of Messel, Germany. We re-describe it on the basis of superficial examination, stereoradiography, and high-resolution X-ray computed tomography of new and published specimens. The scalation of the lizard is unique, consisting of small, keeled scales on the head (including a row of enlarged medial supraorbitals) and large, rhomboidal, keeled scales (invested by osteoderms) that covered the rest of the body. Two paired longitudinal rows of enlarged scales ran down the neck. The head was laterally compressed and box-shaped due to the presence of a strong canthal-temporal ridge; the limbs and tail were very long. Notable osteological features include: a toothed, strap-like vomer; septomaxilla with a long posterior process; palpebral with a long posterolateral process; a lacrimal boss and a single lacrimal foramen; a well-developed cultriform process of the parabasisphenoid; two hypoglossal (XII) foramina in addition to the vagus; a lack of resorption pits for replacement teeth; and possibly the presence of more than one wave of developing replacement teeth per locus. There are no osteological modifications suggestive of an intramandibular hinge, but postmortem displacement of the angular-prearticular-surangular complex in multiple specimens suggests that there might have been some degree of mobility in the lower jaw based on soft-tissue modifications. Using phylogenetic analyses on a data-set comprising 473 morphological characters and 46 DNA loci, we infer that a monophyletic Palaeovaranidae Georgalis, 2017, including Eosaniwa Haubold, 1977, lies on the stem of Varanidae Merrem, 1820, basal to various Cretaceous Mongolian taxa. We transfer feisti to the new genus Paranecrosaurus n. gen. Analysis of gut contents reveals only the second known specimen of the cryptozoic lizard Cryptolacerta hassiaca Müller, Hipsley, Head, Kardjilov, Hilger, Wuttke & Reisz, 2011, confirming a diet that was at least partly carnivorous; the preservation of the teeth of C. hassiaca suggests that the gastric physiology of Paranecrosaurus feisti (Stritzke, 1983) n. comb. had high acidity but low enzyme activity. Based on the foregoing and linear discriminant function analysis, we reconstruct P. feisti n. comb., as a powerful, widely roaming, faunivorous-carnivorous stem monitor lizard with a sensitive snout. If the molecular phylogeny of anguimorphs is correct, then many of the features shared by Helodermatidae Gray, 1837 and Varanidae must have arisen convergently, partly associated with diet. In that case, a reconciliation of morphological and molecular data would require the discovery of equally primitive fossils on the helodermatid stem.


2015 ◽  
Author(s):  
Edwin Cadena

Background. Neochelys franzeni (Schelich, 1993) is the only pleurodire or side-necked turtle from the middle Eocene, Messel Pit (the first UNESCO, World Natural Heritage Site in Germany, since 1995). The original description of the species is based on two specimens SMF ME 1091 (Holotype) and 715 (Paratype) housed at the Senckenberg Museum Frankfurt. The excellent preservation of complete and articulated skeletons of this species makes it a key taxon for understanding the evolution and phylogeny of the European Neochelys genus and its relationships with South American and African-Madagascar podocnemidids. Methods. Seven specimens of Neochelys franzeni, including hatchlings, juveniles, and adults were studied, and the information obtained for this species was included in a new compiled character-taxon matrix of Pleurodira, built from previous studies and new observations. Phylogenetic analyses were run using Parsimony algorithm on PAUP version 4.0a136 obtaining strict consensus trees after 10000 random replicates, boostrap values and Decay indices were also calculated to support the topology of obtained clades. Results. A revised diagnosis for the species is defined here, indicating that Neochelys franzeni differs from other members of the genus by the presence of a basisphenoid with a very acute anterior tip; an interparietal scute with a heart-like shape with a deep concave anteromedial margin; and a ridge running along the neural series of the carapace. Discussion. The phylogenetical analysis indicates that Neochelys spp. group is better resolved as closer to Erymnochelys madagascariensis-Peltocephalus dumerilanus inside Podocnemididae.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2639 ◽  
Author(s):  
Matthew R. Borths ◽  
Patricia A. Holroyd ◽  
Erik R. Seiffert

Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt.Akhnatenavus nefertiticyonsp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. InA. nefertiticyonthe tallest, piercing cusp on M1–M2is the paracone.Brychotherium ephalmosgen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. InB. ephalmosthe tallest, piercing cusp on M1–M2is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships.B. ephalmosis consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, andAkhnatenavusis consistently recovered in Hyainailourinae as part of an Afro-Arabian radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of “proviverrines,” hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades–Hyainailourinae, Apterodontinae, and Teratodontinae–as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.


2020 ◽  
Vol 94 (5) ◽  
pp. 979-1006
Author(s):  
Mary T. Silcox ◽  
Gregg F. Gunnell ◽  
Jonathan I. Bloch

AbstractThe Microsyopidae are extinct mammals from the late Paleocene–late Eocene of North America and the late Paleocene of Europe. While results from phylogenetic analyses support euarchontan affinities, specific relationships of microsyopids to other plesiadapiforms (plausible stem primates), Euprimates (crown primates), Scandentia (treeshrews), and Dermoptera (colugos) are unresolved. An exceptionally well-preserved cranium of Microsyops annectens includes a basicranium that is generally primitive relative to that of other extinct and extant euarchontans in having: (1) a transpromontorial groove for an unreduced internal carotid artery (ICA) entering the middle ear posteromedially; (2) grooves (not tubes) on the promontorium, marking the course for both stapedial and promontorial branches of the ICA; (3) a foramen faciale that opens into the middle ear cavity, with the facial nerve exiting through a stylomastoid foramen primitivum; and (4) unexpanded caudal and rostral tympanic processes of the petrosal. The absence of any preserved bullar elements in the middle ear contrasts with that of other plesiadapiforms for which the region has been recovered, all of which have evidence of an ossified bulla. Microsyops lacks many of the specialized cranial characteristics of crown scandentians and dermopterans. The basicranial anatomy of microsyopids does not provide evidence in support of a clear link to any of the extant euarchontans, and suggests that the primitive morphology of this region in Euarchonta was little differentiated from that observed in the primitive placental mammals.


2015 ◽  
Author(s):  
Edwin Cadena

Background. Neochelys franzeni (Schelich, 1993) is the only pleurodire or side-necked turtle from the middle Eocene, Messel Pit (the first UNESCO, World Natural Heritage Site in Germany, since 1995). The original description of the species is based on two specimens SMF ME 1091 (Holotype) and 715 (Paratype) housed at the Senckenberg Museum Frankfurt. The excellent preservation of complete and articulated skeletons of this species makes it a key taxon for understanding the evolution and phylogeny of the European Neochelys genus and its relationships with South American and African-Madagascar podocnemidids. Methods. Seven specimens of Neochelys franzeni, including hatchlings, juveniles, and adults were studied, and the information obtained for this species was included in a new compiled character-taxon matrix of Pleurodira, built from previous studies and new observations. Phylogenetic analyses were run using Parsimony algorithm on PAUP version 4.0a136 obtaining strict consensus trees after 10000 random replicates, boostrap values and Decay indices were also calculated to support the topology of obtained clades. Results. A revised diagnosis for the species is defined here, indicating that Neochelys franzeni differs from other members of the genus by the presence of a basisphenoid with a very acute anterior tip; an interparietal scute with a heart-like shape with a deep concave anteromedial margin; and a ridge running along the neural series of the carapace. Discussion. The phylogenetical analysis indicates that Neochelys spp. group is better resolved as closer to Erymnochelys madagascariensis-Peltocephalus dumerilanus inside Podocnemididae.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12713
Author(s):  
Nikolay A. Poyarkov ◽  
Tan Van Nguyen ◽  
Parinya Pawangkhanant ◽  
Platon V. Yushchenko ◽  
Peter Brakels ◽  
...  

Slug-eating snakes of the subfamily Pareinae are an insufficiently studied group of snakes specialized in feeding on terrestrial mollusks. Currently Pareinae encompass three genera with 34 species distributed across the Oriental biogeographic region. Despite the recent significant progress in understanding of Pareinae diversity, the subfamily remains taxonomically challenging. Here we present an updated phylogeny of the subfamily with a comprehensive taxon sampling including 30 currently recognized Pareinae species and several previously unknown candidate species and lineages. Phylogenetic analyses of mtDNA and nuDNA data supported the monophyly of the three genera Asthenodipsas, Aplopeltura, and Pareas. Within both Asthenodipsas and Pareas our analyses recovered deep differentiation with each genus being represented by two morphologically diagnosable clades, which we treat as subgenera. We further apply an integrative taxonomic approach, including analyses of molecular and morphological data, along with examination of available type materials, to address the longstanding taxonomic questions of the subgenus Pareas, and reveal the high level of hidden diversity of these snakes in Indochina. We restrict the distribution of P. carinatus to southern Southeast Asia, and recognize two subspecies within it, including one new subspecies proposed for the populations from Thailand and Myanmar. We further revalidate P. berdmorei, synonymize P. menglaensis with P. berdmorei, and recognize three subspecies within this taxon, including the new subspecies erected for the populations from Laos and Vietnam. Furthermore, we describe two new species of Pareas from Vietnam: one belonging to the P. carinatus group from southern Vietnam, and a new member of the P. nuchalis group from the central Vietnam. We provide new data on P. temporalis, and report on a significant range extension for P. nuchalis. Our phylogeny, along with molecular clock and ancestral area analyses, reveal a complex diversification pattern of Pareinae involving a high degree of sympatry of widespread and endemic species. Our analyses support the “upstream” colonization hypothesis and, thus, the Pareinae appears to have originated in Sundaland during the middle Eocene and then colonized mainland Asia in early Oligocene. Sundaland and Eastern Indochina appear to have played the key roles as the centers of Pareinae diversification. Our results reveal that both vicariance and dispersal are responsible for current distribution patterns of Pareinae, with tectonic movements, orogeny and paleoclimatic shifts being the probable drivers of diversification. Our study brings the total number of Pareidae species to 41 and further highlights the importance of comprehensive taxonomic revisions not only for the better understanding of biodiversity and its evolution, but also for the elaboration of adequate conservation actions.


2005 ◽  
Vol 11 ◽  
pp. 103-128 ◽  
Author(s):  
Ann F. Budd ◽  
Nathan D. Smith

Recent molecular analyses of the traditional scleractinian suborder Faviina have revealed a new Atlantic clade of reef corals, which disagrees with traditional classification. The new clade contradicts long-held notions of Cenozoic diversification being concentrated in the Pacific, and of Atlantic species bearing close evolutionary relationships with Pacific species. In the present paper, we outline an approach for integrating molecular, morphologic, and fossil data, which will allow future examination of the timing and phylogenetic context of the divergence of the new Atlantic clade. Our analyses are preliminary and focus on 17 genetically characterized species within the new Atlantic clade. The molecular dataset consists of 630 base pairs from the COI gene and 1143 base pairs from the cytB gene. The morphologic dataset consists of 25 traditional morphologic characters (86 states) in 57 species (23 extant and 32 extinct). Phylogenetic analyses are first performed separately on the molecular and morphologic (extant taxa only) datasets. Subsequent phylogenetic analyses involve adding fossil taxa to the morphologic dataset and performing a combined analysis for extant taxa.The results of both molecular and morphologic phylogenetic analyses disagree with traditional classification. They also disagree with each other, indicating the two datasets provide different phylogenetic signals and are informative at different taxonomic levels. Molecular trees for the mitochondrial genes analyzed have higher bootstrap support for deeper nodes in the tree; morphologic trees have higher bootstrap support near branch tips. The addition of fossils to the morphologic dataset does not improve resolution within phylogenetic trees, but it does indicate that all of the major subclades within the new Atlantic clade originated prior to middle Eocene time. The pulse of origination associated with Plio-Pleistocene faunal turnover involved speciation within well-established clades. Examination of the geographic distributions of the taxa within each of the four resulting trees indicates that the origin of the Brazilian reef coral fauna involved more than one separate dispersal event or that the fauna may be descended from a larger Mio-Pliocene Atlantic (Caribbean to Brazil) species pool, portions of which have subsequently become extinct. Because of the complex nature of scleractinian evolution (involving possible hybridization), we advocate using a phylogenetic approach that compares multiple independent datasets, including datasets that are currently being developed for new microstructural characters.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9411 ◽  
Author(s):  
Vladislav A. Gorin ◽  
Evgeniya N. Solovyeva ◽  
Mahmudul Hasan ◽  
Hisanori Okamiya ◽  
D.M.S. Suranjan Karunarathna ◽  
...  

Frogs of the genus Microhyla include some of the world’s smallest amphibians and represent the largest radiation of Asian microhylids, currently encompassing 50 species, distributed across the Oriental biogeographic region. The genus Microhyla remains one of the taxonomically most challenging groups of Asian frogs and was found to be paraphyletic with respect to large-sized fossorial Glyphoglossus. In this study we present a time-calibrated phylogeny for frogs in the genus Microhyla, and discuss taxonomy, historical biogeography, and morphological evolution of these frogs. Our updated phylogeny of the genus with nearly complete taxon sampling includes 48 nominal Microhyla species and several undescribed candidate species. Phylogenetic analyses of 3,207 bp of combined mtDNA and nuDNA data recovered three well-supported groups: the Glyphoglossus clade, Southeast Asian Microhyla II clade (includes M. annectens species group), and a diverse Microhyla I clade including all other species. Within the largest major clade of Microhyla are seven well-supported subclades that we identify as the M. achatina, M. fissipes, M. berdmorei, M. superciliaris, M. ornata, M. butleri, and M. palmipes species groups. The phylogenetic position of 12 poorly known Microhyla species is clarified for the first time. These phylogenetic results, along with molecular clock and ancestral area analyses, show the Microhyla—Glyphoglossus assemblage to have originated in Southeast Asia in the middle Eocene just after the first hypothesized land connections between the Indian Plate and the Asian mainland. While Glyphoglossus and Microhyla II remained within their ancestral ranges, Microhyla I expanded its distribution generally east to west, colonizing and diversifying through the Cenozoic. The Indian Subcontinent was colonized by members of five Microhyla species groups independently, starting with the end Oligocene—early Miocene that coincides with an onset of seasonally dry climates in South Asia. Body size evolution modeling suggests that four groups of Microhyla have independently achieved extreme miniaturization with adult body size below 15 mm. Three of the five smallest Microhyla species are obligate phytotelm-breeders and we argue that their peculiar reproductive biology may be a factor involved in miniaturization. Body size increases in Microhyla—Glyphoglossus seem to be associated with a burrowing adaptation to seasonally dry habitats. Species delimitation analyses suggest a vast underestimation of species richness and diversity in Microhyla and reveal 15–33 undescribed species. We revalidate M. nepenthicola, synonymize M. pulverata with M. marmorata, and provide insights on taxonomic statuses of a number of poorly known species. Further integrative studies, combining evidence from phylogeny, morphology, advertisement calls, and behavior will result in a better systematic understanding of this morphologically cryptic radiation of Asian frogs.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Bin Bai ◽  
Jin Meng ◽  
Chi Zhang ◽  
Yan-Xin Gong ◽  
Yuan-Qing Wang

AbstractRhinoceroses have been considered to have originated from tapiroids in the middle Eocene; however, the transition remains controversial, and the first unequivocal rhinocerotoids appeared about 4 Ma later than the earliest tapiroids of the Early Eocene. Here we describe 5 genera and 6 new species of rhinoceroses recently discovered from the early Eocene to the early middle Eocene deposits of the Erlian Basin of Inner Mongolia, China. These new materials represent the earliest members of rhinocerotoids, forstercooperiids, and/or hyrachyids, and bridge the evolutionary gap between the early Eocene ceratomorphs and middle Eocene rhinocerotoids. The phylogenetic analyses using parsimony and Bayesian inference methods support their affinities with rhinocerotoids, and also illuminate the phylogenetic relationships and biogeography of Ceratomorpha, although some discrepancies are present between the two criteria. The nearly contemporary occurrence of various rhinocerotoids indicates that the divergence of different rhinocerotoid groups occurred no later than the late early Eocene, which is soon after the split between the rhinocerotoids and the tapiroids in the early early Eocene. However, the Bayesian tip-dating estimate suggests that the divergence of different ceratomorph groups occurred in the middle Paleocene.


Sign in / Sign up

Export Citation Format

Share Document