Evolutionary Trends and Their Functional Significance in the Post-Paleozoic Echinoids

1974 ◽  
Vol 48 (S5) ◽  
pp. 1-95 ◽  
Author(s):  
Porter M. Kier

Many evolutionary trends are described in the post-Paleozoic echinoids and their functional advantages are discussed. In the ambulacra, the compound plate first appeared in the Late Triassic, becoming more pronounced during the Mesozoic, and reaching its zenith in the Cenozoic. Compounding enabled the echinoid to have more numerous tubefeet, strengthened the test, and increased the size of the ambulacral tubercles and spines. These larger spines provided greater protection from predators and faster locomotion. Petals first appeared in the Middle Jurassic and were developed for more efficient respiration. The first depressed petals occurred in the Late Jurassic, and by Late Cretaceous many echinoids had depressed petals culminating in deep petals in the Cenozoic. These depressions channeled water over the respiratory tubefeet, increased the width of the ambulacra and their tubefeet, and enabled these tubefeet to be protected from predators by the arching of spines over them. An anterior groove is slightly developed by the Middle Jurassic, distinct in the Cretaceous, and deepest in the Cenozoic. This groove provided a passage for food, and shelter for the large penicillate tubefeet. Phyllodes first occur in the Lower Jurassic in both the regular and irregular echinoids. During the Mesozoic the number of pores in the phyllodes in the irregular echinoids was reduced, and in most species one pore was eliminated of a porepair. The phyllodes provided a large number of feeding tubefeet near the peristome. In the apical system of the irregular echinoids, the periproct broke out during the Lower Jurassic. Its movement posteriorly served to separate the echinoid's excrement from its feeding and respiratory areas. The number of genital plates was reduced to a single plate in the cassiduloids by the Late Cretaceous, but this reduction occurred later in the holasteroids and spatangoids; many species living today have more than one genital plate. The Triassic and Early Jurassic echinoids were small; but during the latter part of the Jurassic, larger species occur, particularly among the irregulars and echinothurioids. All the Triassic echinoids except one were circular in marginal outline, but during the Jurassic the test in many irregulars became elongate enabling the echinoid to develop unidirectional movement. The flattening of the test permitted the echinoid to cover its test more easily, making the animal less conspicuous, less affected by wave motion, and placing more of the food-gathering tubefeet in contact with the seafloor. The Triassic lantern had grooved teeth and a shallow foramen, but by the Lower Jurassic some lanterns had a deeper foramen magnum. By the Middle Jurassic keeled teeth are present, and by the Late Cretaceous some lanterns have joined epiphyses. These changes permitted the lantern to be more mobile and strengthened the teeth and epiphyses. The lantern supports in all Triassic echinoids are outgrowths of interambulacral plates, but in the Lower Jurassic many species have ambulacral supports. By the Middle Jurassic these supports are joined together in some species to form an arch. These changes also increased the mobility and power of movement of the lantern. Gill notches first appeared in the Lower Jurassic (Hettangian) and were well developed by the Toarcian. The tubercles and their spines were large in the Triassic and gradually decreased in size in some species through the Mesozoic. This reduction enabled these echinoids with smaller spines to cover their tests with sediment. The rate of introduction of new plates was low in the Triassic, increasing during the Jurassic. This increase was mainly in the ambulacra and served to increase the number of tubefeet. Among the holasteroids-spatangoids some of the ventral interambulacral plates increased in size relative to adjacent plates during the Mesozoic and Cenozoic forming the labrum and plastron. These changes permitted the development of the “heart-shaped” test, and an anterior shift of the peristome. Diversity of echinoids increased since the Triassic with the development of different kinds of echinoids able to inhabit many varied habitats. All Triassic echinoids lived on top of the substrate, but in the Jurassic irregular echinoids began to burrow in the sediment. They increased in number of species during the Mesozoic and now are more numerous in species than the regular echinoids.The difference between Jurassic and Triassic species is not as abrupt as formerly thought, and all Jurassic echinoids are considered to have had a cidaroid ancestor.

2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


2000 ◽  
Vol 6 ◽  
pp. 183-208
Author(s):  
David E. Fastovsky

The middle jurassic through Cretaceous was the heyday of gymnosperms. Gymnosperms—a paraphyletic group of seed-bearing, non-flowering vascular plants including conifers, ginkgos, seed ferns, cycads, and cycadeoids—comprised as much as 80% of global floras throughout this time interval. Even the much-heralded rise of angiosperms in the mid- to Late Cretaceous did little to shake the Mesozoic dominance among terrestrial floras of gymnosperms (in particular, conifers; see Tiffney, 1997). By the end of the Cretaceous, angiosperms comprised—depending upon whose estimate is being used—somewhere between 40 and 60% of the world's floras (Lidgard and Crane, 1988; Tiffney, 1997), leaving plenty of ecospace available for gymnosperms. The lower part of Figure 1, redrawn from Tiffney (1997), documents the flux of the major groups of plants throughout the Late Triassic-through-latest Cretaceous interval. The figure reaffirms that in the Mesozoic, gymnosperms were the floral force to be reckoned with.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sofia Laskari ◽  
Konstantinos Soukis ◽  
Stylianos Lozios ◽  
Daniel F. Stockli ◽  
Eirini M. Poulaki ◽  
...  

Detailed mapping and structural observations on the Cycladic Blueschist Unit (CBU) on Iraklia Island integrated with detrital zircon (DZ) U-Pb ages elucidate the Mesozoic pre-subduction and the Cenozoic orogenic evolution. Iraklia tectonostratigraphy includes a heterogeneous Lower Schist Fm., juxtaposed against a Marble Fm. and an overlying Upper Schist Fm. The contact is an extensional ductile-to-brittle-ductile, top-to-N shear zone, kinematically associated with the Oligo-Miocene exhumation. The DZ spectra of the Lower Schist have Gondwanan/peri-Gondwanan provenance signatures and point to Late Triassic Maximum Depositional Ages (MDAs). A quartz-rich schist lens yielded Precambrian DZ ages exclusively and is interpreted as part of the pre-Variscan metasedimentary Cycladic Basement, equivalent to schists of the Ios Island core. The Upper Schist represents a distinctly different stratigraphic package with late Cretaceous MDAs and dominance of Late Paleozoic DZ ages, suggestive of a more internal Pelagonian source. The contrast in the DZ U-Pb record between Lower and Upper Schist likely reflects the difference between a Paleotethyan and Neotethyan geodynamic imprint. The Triassic DZ input from eroded volcanic material is related to the final Paleotethys closure and Pindos/CBU rift basin opening, while late Cretaceous metamorphic/magmatic zircons and ~48–56 Ma zircon rims constrain the onset of Neotethyan convergence and high-pressure subduction metamorphism.


GeoArabia ◽  
2004 ◽  
Vol 9 (2) ◽  
pp. 81-132 ◽  
Author(s):  
Ingo Blechschmidt ◽  
Paulian Dumitrica ◽  
Albert Mater ◽  
Leopold Krystyn ◽  
Tjerk Peters

ABSTRACT The Triassic to Late Cretaceous deep-marine sediments of the Hamrat Duru Group, Oman Mountains, represent a subunit of the Hawasina nappe-complex which was deposited in a deep marine basin. During the Late Cretaceous SSW-directed obduction of the Semail Ophiolite, the Hawasina complex was emplaced onto the autochthonous cover of the Arabian basement, while the original configuration of the basin was destroyed. New lithostratigraphic results and high-resolution radiolarian and conodont biostratigraphy lead to a revised stratigraphic scheme of the Hamrat Duru Group which conforms with the standard stratigraphical nomenclature. The Hamrat Duru Group is divided into six formations: (1) The Early Triassic (Olenekian) to Late Triassic (Upper Norian) Zulla Formation (Limestone and Shale Member, Sandstone and Shale Member, Radiolarian Chert Member and Halobia Limestone Member); (2) The Late Triassic (late Norian to Rhaetian) Al Ayn Formation; (3) The Early Jurassic (late Pliensbachian) to Middle Jurassic (early Callovian) Guwayza Formation (Tawi Sadh Member and Oolitic Limestone Member); (4) Middle Jurassic (Callovian) to Late Cretaceous (Cenomanian?) Sid’r Formation (Lower Member, Upper Member); (5) Late Cretaceous (Cenomanian? to Santonian?) Nayid Formation; and (6) Late Jurassic (early Callovian) to Early (Late?) Cretaceous Wahrah Formation. Most of the lithostratigraphic units (formations and members) show isochronous boundaries between the different outcrop areas. The stratigraphic architecture of the Hamrat Duru Group megasequence is controlled by alternating siliciclastic and carbonate sedimentation possibly related to the second-order sea-level variations. The sediments accumulated on the continental rise of the Arabian margin mostly by submarine sediment-gravity flows and hemipelagic to pelagic rainout. A close relationship of the evolution of the Arabian Platform and the adjoining slope and basinal environments is evident. Changes in carbonate supply, oceanographic circulation and/or variations in silica productivity resulted in two distinct phases of radiolarian sedimentation. The first phase corresponds to the Triassic late Anisian-early Norian time interval; the second started in the Early Jurassic late Pliensbachian and lasted, with some interruptions, up to the Late Cretaceous Coniacian. The litho- and biostratigraphic similarities between the Mesozoic Hamrat Duru Basin of the northern/central Oman Mountains and the Mesozoic Batain Basin of northeastern Oman are seen as related to Neo-Tethys-wide palaeoceanographic changes and suggest a strong interdependence of the two basins with the evolution of the Arabian Platform.


1993 ◽  
Vol 30 (10) ◽  
pp. 2002-2012 ◽  
Author(s):  
Dale A. Russell

Dinosaurian biogeography may have been largely controlled by the Mesozoic fragmentation of Pangea and the reassembly of its fragments into a new, boreal supercontinent (Laurasia). Although Late Triassic and Early Jurassic dinosaurs were globally distributed, Chinese assemblages were dominated by endemic forms from Middle Jurassic into Early Cretaceous time. The affinities of Aptian – Albian immigrants to Asia were strongest with North America and Europe rather than Gondwana, indicating that the northern and southern hemispheres had by then attained their biogeographic identity. This distinctiveness was maintained through Cretaceous time. Europe seems to have been a buffer area between Paleolaurasia and Gondwana; of the northern continents it was the most strongly influenced by Gondwana dispersants. Late Jurassic dinosaur assemblages in North America exhibited Gondwana affinities, but by Late Cretaceous time they were dominated by forms of Asian ancestry.


2003 ◽  
Vol 1 ◽  
pp. 145-216 ◽  
Author(s):  
Olaf Michelsen ◽  
Lars H. Nielsen ◽  
Peter N. Johannessen ◽  
Jan Andsbjerg ◽  
Finn Surlyk

A complete updated and revised lithostratigraphic scheme for the Jurassic succession of the onshore and offshore Danish areas is presented together with an overview of the geological evolution. The lithostratigraphies of Bornholm, the Danish Basin and the Danish Central Graben are described in ascending order, and a number of new units are defined. On Bornholm, the Lower–Middle Jurassic coal-bearing clays and sands that overlie the Lower Pliensbachian Hasle Formation are referred to the new Sorthat Formation (Lower Jurassic) and the revised Bagå Formation (Middle Jurassic). In the southern Danish Central Graben, the Middle Jurassic succession formerly referred to the Lower Graben Sand Formation is now included in the revised Bryne Formation. The Lulu Formation is erected to include the uppermost part of the Middle Jurassic succession, previously referred to the Bryne Formation in the northern Danish Central Graben. The Upper Jurassic Heno Formation is subdivided into two new members, the Gert Member (lower) and the Ravn Member (upper). The organic-rich part of the upper Farsund Formation, the former informal ‘hot unit’, is established formally as the Bo Member. Dominantly shallow marine and paralic deposition in the Late Triassic was succeeded by widespread deposition of offshore marine clays in the Early Jurassic. On Bornholm, coastal and paralic sedimentation prevailed. During maximum transgression in the Early Toarcian, sedimentation of organic-rich offshore clays took place in the Danish area. This depositional phase was terminated by a regional erosional event in early Middle Jurassic time, caused by uplift of the central North Sea area, including the Ringkøbing–Fyn High. In the Sorgenfrei–Tornquist Zone to the east, where slow subsidence continued, marine sandy sediments were deposited in response to the uplift. Uplift of the central North Sea area was followed by fault-controlled subsidence accompanied by fluvial and floodplain deposition during Middle Jurassic time. On Bornholm, deposition of lacustrine muds, fluvial sands and peats dominated. The late Middle Jurassic saw a gradual shift to shallow marine deposition in the Danish Central Graben, the Danish Basin and Skåne, southern Sweden. During the Late Jurassic, open marine shelf conditions prevailed with deposition of clay-dominated sediments while shallow marine sands were deposited on platform areas. The Central Graben received sand by means of sediment gravity flows. The clay sediments in the Central Graben became increasingly rich in organic matter at the Jurassic–Cretaceous transition, whilst shallow marine coarse-grained deposits prograded basinwards in the Sorgenfrei– Tornquist Zone.


1978 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
A. Crostella ◽  
M. A. Chaney

The Dampier Sub-basin represents the northern part of a depositional downwarp along the Western Australian coast within the greater Carnarvon Basin. The sub-basin can be separated into an inner and outer section by the depositional Lewis Trough, which drilling and seismic results indicate to have been active since at least earliest Jurassic times.The Dampier Sub-basin originated as an intracratonic depocentre at the end of the Carboniferous and has developed progressively into a marginal basin at the present day. The oldest sediments penetrated to date in the outer area are fluviatile Upper Triassic clastics. Well data have shown that sedimentation continued without a break from the Late Triassic until the late Middle Jurassic, with gradually increasing marine influences. This phase of deposition was terminated by uplift in the Early Callovian, resulting in the emergence of various parts of the basin. These areas were transgressed at different stages, but by the late Early Cretaceous a marine environment was firmly established over the whole region.Eleven hydrocarbon accumulations have been discovered to date in the Outer Dampier Sub-basin where the primary hydrocarbon generating section is believed to consist of pre- Upper Cretaceous shales, particularly in the Lewis Trough. The feature of major relevance to the petroleum geology is the Rankin Platform where the main discoveries occur in Triassic to Lower Jurassic reservoirs. Trapping is provided primarily by the drape and differential compaction of Cretaceous shales over the pre-tectonic horsts, but the water level in individual fields appears to depend on a combination of both drape and fault trapping. In the Angel Field, on the Madeleine Trend, hydrocarbons occur in Tithonian sands within a fold structure sealed by conformable Cretaceous shales.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 573
Author(s):  
Shahid Iqbal ◽  
Michael Wagreich ◽  
Mehwish Bibi ◽  
Irfan U. Jan ◽  
Susanne Gier

The Salt Range, in Pakistan, preserves an insightful sedimentary record of passive margin dynamics along the NW margin of the Indian Plate during the Mesozoic. This study develops provenance analyses of the Upper Triassic (Kingriali Formation) to Lower Jurassic (Datta Formation) siliciclastics from the Salt and Trans Indus ranges based on outcrop analysis, petrography, bulk sediment elemental geochemistry, and heavy-mineral data. The sandstones are texturally and compositionally mature quartz arenites and the conglomerates are quartz rich oligomictic conglomerates. Geochemical proxies support sediment derivation from acidic sources and deposition under a passive margin setting. The transparent heavy mineral suite consists of zircon, tourmaline, and rutile (ZTR) with minor staurolite in the Triassic strata that diminishes in the Jurassic strata. Together, these data indicate that the sediments were supplied by erosion of the older siliciclastics of the eastern Salt Range and adjoining areas of the Indian Plate. The proportion of recycled component exceeds the previous literature estimates for direct sediment derivation from the Indian Shield. A possible increase in detritus supply from the Salt Range itself indicates notably different conditions of sediment generation, during the Triassic–Jurassic transition. The present results suggest that, during the Triassic–Jurassic transition in the Salt Range, direct sediment supply from the Indian Shield was probably reduced and the Triassic and older siliciclastics were exhumed on an elevated passive margin and reworked by a locally established fluvio-deltaic system. The sediment transport had a north-northwestward trend parallel to the northwestern Tethyan margin of the Indian Plate and normal to its opening axis. During the Late Triassic, hot and arid hot-house palaeoclimate prevailed in the area that gave way to a hot and humid greenhouse palaeoclimate across the Triassic–Jurassic Boundary. Sedimentological similarity between the Salt Range succession and the Neo-Tethyan succession exposed to the east on the northern Indian passive Neo-Tethyan margin suggests a possible westward extension of this margin.


2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.


1986 ◽  
Vol 5 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Nigel R. Ainsworth ◽  
Nicola F. Horton

Abstract. The geology, biostratigraphy and palaeoecology of exploration well Elf 55/30–1 in the Fastnet Basin are summarised. The biostratigraphical and ecological distribution of the foraminifera and Ostracoda from the late Triassic, the Lower Jurassic and the Lower Cretaceous are reviewed with reference to microfaunas elsewhere in Europe. Selected microfossil taxa are illustrated.


Sign in / Sign up

Export Citation Format

Share Document