The Boltzmann relation in electronegative plasmas: When is it permissible to use it?

2000 ◽  
Vol 64 (2) ◽  
pp. 131-153 ◽  
Author(s):  
R. N. FRANKLIN ◽  
J. SNELL

This paper reports the results of computations to obtain the spatial distributions of the charged particles in a bounded active plasma dominated by negative ions. Using the fluid model with a constant collision frequency for electrons, positive ions and negative ions the cases of both detachment-dominated gases (such as oxygen) and recombination-dominated gases (such as chlorine) are examined. It is concluded that it is valid to use a Boltzmann relation ne = ne0exp(eV/kT) for the electrons of density ne, where the temperature T is approximately the electron temperature Te, and that the density nn of the negative ions at low pressures obeys nn = nn0exp(eV/kTn), where Tn is the negative-ion temperature. However, at high pressure in detachment-dominated gases where the ratio of negative-ion density to electron density is constant and greater than unity, and when the attachment rate is larger than the ionization rate, the negative ions are distributed with the same effective temperature as the electrons. In all other cases there is no simple relationship. Thus to put nn/ne = const, nn = ne0exp(eV/kTe) and nn = nn0exp(eV/kTn) simultaneously is mathematically inconsistent and physically unsound. Accordingly, expressions deduced for ambipolar diffusion coefficients based on these assumptions have no validity. The correct expressions for the situation where nn/ne = const are obtained without invoking a Boltzmann relation for the negative ions.

1999 ◽  
Vol 62 (5) ◽  
pp. 541-559 ◽  
Author(s):  
M. S. BENILOV ◽  
R. N. FRANKLIN

The method of matched asymptotic expansions is used to examine the structure of the plasma sheath of the positive column at low pressure in electronegative gases using the fluid model to describe the positive-ion motion. It is shown that at low negative-ion concentrations, and at high concentrations, the structure is that of a plasma joined to a thin sheath, but that for the electron/negative-ion temperature ratio Te/Tn ≡ ε > 5 + √24, and for a well-defined range of A ≡ nn0/ne0 (the central negative ion to electron density ratio) and for small Debye length, there is a more complex structure with a central negative-ion-dominated plasma surrounded by a quasiplasma in which density oscillations may occur before joining to a sheath. This is in agreement with recent computations using the same model.


1997 ◽  
Vol 58 (3) ◽  
pp. 455-466 ◽  
Author(s):  
SEUNGJUN YI ◽  
YASSER EL-ZEIN ◽  
KARL E. LONNGREN ◽  
TERENCE E. SHERIDAN

The two-dimensional spatial and temporal evolution of a plasma surrounding an electrode whose potential is suddenly decreased is experimentally investigated. The electrode contains a localized convex or a localized concave perturbation. The quasineutral plasma consists of positive ions and various proportions of negative ions and electrons. The results are compared and contrasted with those that are obtained numerically using a particle-in-cell (PIC) simulation and those that had previously been obtained using a fluid-model code.


The velocity of ions in gases at reduced pressures was first investigated by Rutherford and by Langevin. Recently the author and others have carried out similar investigations. The results of these investigations show that for the negative ions in air the product of the mobility and the pressure is constant for pressures ranging from 760 mm. to 200 mm. of mercury, but with further reduction the product increases with the reduction of pressure, this increase becoming very great at low pressures. For the positive ions in air the product of the mobility and pressure is constant for pressures investigated between 760 mm. and 3 mm. of mercury. Similar results were obtained for the mobilities of the ions in other gases. The results show that if the ion is an aggregation of molecules, this aggregation becomes, at low pressures, less complex in the ease of the negative ion, while in the ease of the positive ion it persists down to 3 mm. of mercury. The purpose of the present research was the study of the mobilities of both kinds of ions in gases at high pressures. The method of investigation is based on the mathematical expression, developed by Prof. Rutherford, for the current between two plates, assuming that a very intense ionisation exists near the surface of one of the electrodes.


1936 ◽  
Vol 32 (3) ◽  
pp. 482-485 ◽  
Author(s):  
R. A. Smith

When an electron makes a transition from a continuous state to a bound state, for example in the case of neutralization of a positive ion or formation of a negative ion, its excess energy must be disposed of in some way. It is usually given off as radiation. In the case of neutralization of positive ions the radiation forms the well-known continuous spectrum. No such spectrum due to the direct formation of negative ions has, however, been observed. This process has been fully discussed in a recent paper by Massey and Smith. It is shown that in this case the spectrum would be difficult to observe.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Samiran Ghosh ◽  
Biplab Maity ◽  
Swarup Poria

The dynamical behaviour of weakly nonlinear, low-frequency sound waves are investigated in a plasma composed of only positive and negative ions incorporating the effects of a weak external uniform magnetic field. In the plasma model the mass (temperature) of the positive ions is smaller (larger) than that of the negative ions. The dynamics of the nonlinear wave is shown to be governed by a novel nonlinear equation. The stationary plane wave (analytical and numerical) nonlinear analysis on the basis of experimental parameters reveals that the nonlinear wave does have quasi-periodic and chaotic solutions. The Poincarè return map analysis confirms these observed complex structures.


2011 ◽  
Author(s):  
Stiliyan St. Lishev ◽  
Antonia P. Shivarova ◽  
Khristo Ts. Tarnev ◽  
Yasuhiko Takeiri ◽  
Katsuyoshi Tsumori

2020 ◽  
Vol 25 (1) ◽  
pp. 61-67
Author(s):  
Anish Maskey ◽  
Atit Deuja ◽  
Suresh Basnet ◽  
Raju Khanal

 A one dimensional particle-in-cell (PIC) simulation method has been employed to study the effect of DC voltage and ion temperature on the properties of ion-ion plasma bounded by two symmetrical but oppositely biased electrodes. It is assumed that the ion-ion plasma is collisionless and both the positive and negative ion species have the same mass, temperature, and degree of ionization. Simulation results show that the formation of sheath and presheath regions and fluctuation of plasma parameters in that region are affected by the biasing voltage and ion temperature. It was found that the magnitude of the electrostatic electric field at the vicinity of biasing electrodes was affected by the biasing voltage and ion temperature as well. This strong electric field close to the electrodes further prevents the flow of charged particles towards the electrodes. The presence of a non-zero electric field at the quasineutral region suggests a presheath region similar to the electron-ion plasma. In the quasineutral region, the density of ions increased with the increase in biasing voltage and decreased with the increase in temperature of isothermal ions. Furthermore, the phase space diagrams for the ions were obtained which indicated different regions of the plasma. The positive ions acquire negative velocity towards the negatively biased electrode and the negative ions acquire positive velocity towards the positively biased electrode.


The ionized regions of the upper atmosphere include, not only neutral atoms and molecules, electrons and positive ions, but also negative ions. Of these, electrons are alone effective in producing reflexion of wireless waves; so that an electron attached to a neutral molecule to form a negative ion is as effectively removed from active participation in these phenomena as one recombined with a positive ion to form a neutral molecule. The decay of electron density at night has been attributed by some authors to recombination with positive.ions and by others to attachment by neutral molecules. The first process is in agreement with the observed law of decay and has the additional advantage of making it easily possible to understand the formation of layers of concentrated ionization; on the other hand, the chance of attachment to a molecule per impact would have to be extremely small for the attachment rate to be negligible, since the number of collisions per second with neutral atoms is very much greater than with positive ions.


2013 ◽  
Vol 79 (5) ◽  
pp. 893-908 ◽  
Author(s):  
M. K. MISHRA ◽  
S. K. JAIN

AbstractIon-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.


The three previous papers of this series (Arnot and Milligan 1936 b ; Arnot 1937 a, b ) contain an account of experimental work which led the senior author to propose a new process of negative-ion formation. This process is the formation of negative ions at metal surfaces by bombardment of the surface with positive ions, the negative ion being formed by the positive ion capturing two electron from the surface. Further work carried out during the past year, which is described in this paper, has revealed a new variation of the above process. In this latter process the impinging positive ion causes an adsorbed atom on the surface to come off as a negative ion. It is believed that this newer process is essentially similar to the process previously reported, the difference being due merely to the transference of excitation energy from the incident positive ion, after its capture of an electron, to the atom adsorbed on the surface. The discovery of this second effect was made independently by Sloane and Press (1938), although they attribute it to a different process.


Sign in / Sign up

Export Citation Format

Share Document