Kinetic theory of Alfvén waves in plasmas with force-free currents

1991 ◽  
Vol 45 (2) ◽  
pp. 213-228 ◽  
Author(s):  
I. J. Donnelly ◽  
B. E. Clancy

Equations are derived for the kinetic-theory analysis of small-amplitude Alfvén waves in cylindrical plasmas carrying force-free currents. The equations, which include ion Larmor-radius effects to second order, are applicable to reversed-field pinches as well as to tokamaks. Fourier mode amplitudes are derived for model antennas with radial current feeds, and a quantitative analysis is made of the antenna resistance and the wave density fields in a small tokamak during Alfvén-wave heating. The effect of the plasma current on the wave thermal energy flux is discussed.

2000 ◽  
Vol 63 (4) ◽  
pp. 311-328 ◽  
Author(s):  
A. BARONIA ◽  
M. S. TIWARI

Kinetic Alfvén waves in the presence of an inhomogeneous electric field applied perpendicular to the ambient magnetic field in an anisotropic, inhomogeneous magnetoplasma are investigated. The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of a kinetic Alfvén wave. Expressions are found for the field-aligned current, the perpendicular current, the dispersion relation and the particle energies. The growth rate of the wave is obtained by an energy- conservation method. It is predicted that plasma density inhomogeneity is the main source of instability, and an enhancement of the growth rate by electric field inhomogeneity and temperature anisotropy is found. The dispersion relation and growth rate involve the finite-Larmor-radius effect, electron inertia and the temperature anisotropy of the magnetoplasma. The applicability of the investigation to the auroral acceleration region is discussed.


1985 ◽  
Vol 107 ◽  
pp. 381-389
Author(s):  
Akira Hasegawa

Mechanisms of Alfvén wave heating in space-astrophysical plasmas are presented with particular emphasis on the parallel electric field generated in the magnetohydrodynamic perturbations due to the finite Larmor radius effects.


1986 ◽  
Vol 35 (1) ◽  
pp. 75-106 ◽  
Author(s):  
I. J. Donnelly ◽  
B. E. Clancy ◽  
N. F. Cramer

Kinetic theory, including ion Larmor radius effects, is used to analyse the Alfvén wave heating of cylindrical plasmas using axisymmetric waves excited by an antenna at frequencies up to the ion cyclotron frequency. At the Alfvén resonance position, the compressional wave is mode converted to a quasi-electrostatic wave (QEW) which propagates towards the plasma centre or edge depending on whether the plasma is hot or warm. The energy absorbed by the plasma agrees with the MHD theory predictions provided the QEW is heavily damped before reaching the plasma centre or edge; if it is not, then QEW resonances may occur with a consequent increase in antenna resistance. The relation between ion cyclotron wave resonances and QEW resonances in a hot plasma is shown. The behaviour described above is demonstrated by numerical solution of the wave equations for small and large tokamak-like plasmas. WKB theory has been used to derive useful expressions which quantify the QEW behaviour.


1990 ◽  
Vol 142 ◽  
pp. 223-229
Author(s):  
F. Califano ◽  
C. Chiuderi ◽  
G. Einaudi

The resistive dissipation of Alfvén waves in magnetically structured media is examined within the framework of an analytically solvable model in plane geometry. A new class of rapidly oscillations solutions is found, for which the role of resistivity extends to the whole system.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
J. Robertson ◽  
T. A. Carter ◽  
S. Vincena

In this paper, we propose an efficient diagnostic technique for determining spatially resolved measurements of the ion density ratio in a magnetized two-ion species plasma. Shear Alfvén waves were injected into a mixed helium–neon plasma using a magnetic loop antenna, for frequencies spanning the ion cyclotron regime. Two distinct propagation bands are observed, bounded by $\omega < \varOmega _\textrm {Ne}$ and $\omega _{ii} < \omega < \varOmega _\textrm {He}$ , where $\omega _{ii}$ is the ion–ion hybrid cutoff frequency and $\varOmega _\textrm {He}$ and $\varOmega _\textrm {Ne}$ are the helium and neon cyclotron frequencies, respectively. A theoretical analysis of the cutoff frequency was performed and shows it to be largely unaffected by kinetic electron effects and collisionality, although it can deviate significantly from $\omega _{{ii}}$ in the presence of warm ions due to ion finite Larmor radius effects. A new diagnostic technique and accompanying algorithm was developed in which the measured parallel wavenumber $k_\parallel$ is numerically fit to the predicted inertial Alfvén wave dispersion in order to resolve the local ion density ratio. A major advantage of this algorithm is that it only requires a measurement of $k_\parallel$ and the background magnetic field in order to be employed. This diagnostic was tested on the Large Plasma Device at UCLA and was successful in yielding radially localized measurements of the ion density ratio.


1977 ◽  
Vol 18 (2) ◽  
pp. 209-226 ◽  
Author(s):  
J. M. Kappraff ◽  
J. A. Tataronis

We consider the effects of resistive dissipation on energy absorption by spatially localized Alfvén waves which form a part of the continuous spectrum of ideal magnetohydrodynamics (MHD). We demonstrate that the strong absorption rate found in ideal MHD is unaltered for plasma resistivities of the order found in tokamaks, thus implying the possibility of effective heating of these machines by Alfvén waves.


1978 ◽  
Vol 20 (1) ◽  
pp. 137-148 ◽  
Author(s):  
B. I. Meerson ◽  
A. B. Mikhallovskii ◽  
O. A. Pokhotelov

Resonant excitation of Alfvén waves by fast particles in a finite pressure plasma in a non-uniform magnetic field is studied. Plasma compressibility in the wave field is determined both by the curvature of the magnetic lines of force and finite Larmor radius of fast particles. A general expression for the instability growth rate is obtained and analyzed; the applicability of the results obtained in the previous paper has also been studied. The finite pressure stabilization of the trapped particles instability has been found. The bounce-resonance effects are analyzed.


1999 ◽  
Vol 17 (4) ◽  
pp. 463-489 ◽  
Author(s):  
P. Prikryl ◽  
J. W. MacDougall ◽  
I. F. Grant ◽  
D. P. Steele ◽  
G. J. Sofko ◽  
...  

Abstract. A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0). The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.Key words. Ionosphere (polar ionosphere). Magneto- spheric physics (magnetosphere-ionosphere interactions; polar wind-magnetosphere interactions).


2005 ◽  
Vol 12 (3) ◽  
pp. 321-336 ◽  
Author(s):  
B. T. Tsurutani ◽  
G. S. Lakhina ◽  
J. S. Pickett ◽  
F. L. Guarnieri ◽  
N. Lin ◽  
...  

Abstract. Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs) in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field) protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant "turbulence" created by the Alfvén wave dissipation is quite complex. There are both propagating (waves) and nonpropagating (mirror mode structures and MDs) byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the "turbulence" is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse) shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs). Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in this exciting new area.


2019 ◽  
Vol 5 (2) ◽  
pp. 9-14
Author(s):  
Анатолий Леонович ◽  
Anatoliy Leonovich ◽  
Цюган Цзун ◽  
Qiugang Zong ◽  
Даниил Козлов ◽  
...  

We study Alfvén waves generated in the magnetosphere during the passage of an interplanetary shock wave. After shock wave passage, the oscillations with typical Alfvén wave dispersion have been detected in spacecraft observations inside the magnetosphere. The most frequently observed oscillations are those with toroidal polarization; their spatial structure is described well by the field line resonance (FLR) theory. The oscillations with poloidal polarization are observed after shock wave passage as well. They cannot be generated by FLR and cannot result from instability of high-energy particle fluxes because no such fluxes were detected at that time. We discuss an alternative hypothesis suggesting that resonant Alfvén waves are excited by a secondary source: a highly localized pulse of fast magnetosonic waves, which is generated in the shock wave/plasmapause contact region. The spectrum of such a source contains oscillation harmonics capable of exciting both the toroidal and poloidal resonant Alfvén waves.


Sign in / Sign up

Export Citation Format

Share Document