Self-modulated wakefield acceleration in a centimetre self-guiding channel

2012 ◽  
Vol 78 (4) ◽  
pp. 433-440 ◽  
Author(s):  
C. KAMPERIDIS ◽  
C. BELLEI ◽  
N. BOURGEOIS ◽  
M. C. KALUZA ◽  
K. KRUSHELNICK ◽  
...  

AbstractSelf-modulated wakefield acceleration was investigated at densities down to ~4 × 1018 cm−3 by propagating the 50 TW 300 fs LULI laser in helium gas jets at lengths up to 1 cm. Long interaction lengths were achieved by closer matching of the initial focal spot size to the matched spot size for these densities. Electrons with energies extending to 180 MeV were observed in broad energy spectra which show some evidence for non-Maxwellian features at high energy. Two-dimensional PIC simulations indicate that the intial laser pulse breaks up into small pulselets that are eventually compressed and focused inside the first few plasma periods, leading to a ‘bubble-like’ acceleration of electron bunches.

1995 ◽  
Vol 13 (2) ◽  
pp. 221-229 ◽  
Author(s):  
A. Tauschwitz ◽  
E. Boggasch ◽  
D.H.H. Hoffmann ◽  
J. Jacoby ◽  
U. Neuner ◽  
...  

Focusing of heavy-ion beams is an important issue for ion beam-driven inertial confinement fusion. For the experimental program to investigate matter at high energy densities at GSI, the application of a plasma lens has attractive features compared to standard quadrupole lenses. A plasma lens using a wall-stabilized discharge has been systematically investigated and optimized for this purpose. Different lenses were tested in several runs at the GSI linear accelerator UNILAC and at the SIS-synchrotron. A remarkably high accuracy and reproducibility of the focusing were found. The focal spot size was mainly limited by the beam emittance. A summary of experimental results and important limitations of the focal spot size is given.


2021 ◽  
pp. 1-12
Author(s):  
Dongcai Hu ◽  
Zheng Zhou ◽  
Jianxin Wang ◽  
Dexin Xiao ◽  
Kui Zhou ◽  
...  

High-energy, high-dose, microfocus X-ray computed tomography (HHM CT) is one of the most effective methods for high-resolution X-ray radiography inspection of high-density samples with fine structures. Minimizing the effective focal spot size of the X-ray source can significantly improve the spatial resolution and the quality of the sample images, which is critical and important for the performance of HHM CT. The objective of this study is to present a 9 MeV HHM CT prototype based on a high-average-current photo-injector in which X-rays with about 70μm focal spot size are produced via using tightly focused electron beams with 65/66μm beam size to hit an optimized tungsten target. In digital radiography (DR) experiment using this HHM CT, clear imaging of a standard 0.1 mm lead DR resolution phantom reveals a resolution of 6 lp/mm (line pairs per mm), while a 5 lp/mm resolution is obtained in CT mode using another resolution phantom made of 10 mm ferrum. Moreover, comparing with the common CT systems, a better turbine blade prototype image was obtained with this HHM CT system, which also indicates the promising application potentials of HHM CT in non-destructive inspection or testing for high-density fine-structure samples.


2016 ◽  
Vol 879 ◽  
pp. 1576-1581 ◽  
Author(s):  
Maria Richetta ◽  
Pasquale Gaudio ◽  
Roberto Montanari ◽  
Ekaterina Pakhomova ◽  
Luca Antonelli

W is a plasma-facing material candidate for applications in future nuclear fusion reactors (NFR). In this work transient thermal loads of high energy have been simulated by interaction with a single laser pulse. The experiments have been carried out by using the Nd:Glass TVLPS laser working in first harmonic (wavelength λ = 1064 nm); the pulse parameters are: energy E ≈ 8 J, pulse duration ∆t ≈ 15 ns, focal spot size Φ = 200 μm, surface power density on the focal plane I = 1.7 x 1012 W/cm2.The damage produced by the laser pulse on the surface of bulk and plasma sprayed W has been investigated by Scanning Electron Microscopy (SEM) observations. The preliminary results will be presented.


2020 ◽  
Vol 78 (4) ◽  
pp. 479-486
Author(s):  
Marcela Tatiana Fernandes Beserra ◽  
◽  
Ricardo Tadeu Lopes ◽  
Davi Ferreira de Oliveira ◽  
Claudio Carvalho Conti ◽  
...  

2011 ◽  
Vol 29 (3) ◽  
pp. 345-351 ◽  
Author(s):  
C.M. Brenner ◽  
J.S. Green ◽  
A.P.L. Robinson ◽  
D.C. Carroll ◽  
B. Dromey ◽  
...  

AbstractThe scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15–380 mJ at intensities of 1016–1018 W/cm2. The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.


2015 ◽  
Vol 82 ◽  
pp. 138-145 ◽  
Author(s):  
A.D. Oliveira ◽  
M.J. Fartaria ◽  
J. Cardoso ◽  
L.M. Santos ◽  
C. Oliveira ◽  
...  

2019 ◽  
Vol 61 (3) ◽  
pp. 034001 ◽  
Author(s):  
C D Armstrong ◽  
C M Brenner ◽  
E Zemaityte ◽  
G G Scott ◽  
D R Rusby ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Manzoor Ahmad Wani ◽  
Niti Kant

Self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot size. Plasma density ramp plays an important role in reducing the defocusing effect and maintaining the focal spot size up to several Rayleigh lengths. To discuss the nature of self-focusing, the behaviour of beam-width parameters with dimensionless distance of propagation for various values of decentered parameters is examined by numerical estimates. The results are presented graphically and the effect of plasma density ramp and decentered parameter on self-focusing of the beams has been discussed.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012166
Author(s):  
D A Savelyev

Abstract The diffraction of vortex laser beams with circular polarization by ring gratings with the variable height was investigated in this paper. Modelling of near zone diffraction is numerically investigated by the finite difference time domain (FDTD) method. The changes in the length size of the light needle and focal spot size are shown depending on the type of the ring grating.


Sign in / Sign up

Export Citation Format

Share Document