Effect of driving frequency on dust particle dynamics in radiofrequency capacitive argon discharge

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Abdelhak Missaoui ◽  
Morad El kaouini ◽  
Hassan Chatei

This paper investigates the influence of the driving frequency on the dynamics of a single dust particle in argon radiofrequency discharge. A one-dimensional fluid model is presented and solved in the entire inter-electrode domain using the finite difference method. In order to solve the particle equation of motion, the coefficients describing the amplification and the damping of the dust particle oscillations are analytically calculated around the equilibrium position, these coefficients allow us to find the relation between the plasma and dust parameters. The results obtained cover the discharge characteristics, the charge and the dynamics of the dust particle. It has been found that the driving frequency has a significant effect on not only the discharge properties but also on the damped oscillatory motion and the equilibrium position of the dust particle. Hence, these oscillations become closer to the electrodes with increasing driving frequency whereas the dust equilibrium position becomes relatively farther from the powered electrode when the dust size decreases.

Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


1996 ◽  
Vol 11 (11) ◽  
pp. 899-913 ◽  
Author(s):  
N. FLEURY ◽  
M. RAUSCH DE TRAUBENBERG

A group theory justification of one-dimensional fractional supersymmetry is proposed using an analog of a coset space, just like the one introduced in 1-D supersymmetry. This theory is then gauged to obtain a local fractional supersymmetry, i.e. a fractional supergravity which is then quantized à la Dirac to obtain an equation of motion for a particle which is in a representation of the braid group and should describe alternative statistics. A formulation invariant under general reparametrization is given by means of a curved fractional superline.


2017 ◽  
Vol 24 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Pedro Monroy ◽  
Emilio Hernández-García ◽  
Vincent Rossi ◽  
Cristóbal López

Abstract. We study the problem of sinking particles in a realistic oceanic flow, with major energetic structures in the mesoscale, focussing on the range of particle sizes and densities appropriate for marine biogenic particles. Our aim is to evaluate the relevance of theoretical results of finite size particle dynamics in their applications in the oceanographic context. By using a simplified equation of motion of small particles in a mesoscale simulation of the oceanic velocity field, we estimate the influence of physical processes such as the Coriolis force and the inertia of the particles, and we conclude that they represent negligible corrections to the most important terms, which are passive motion with the velocity of the flow, and a constant added vertical velocity due to gravity. Even if within this approximation three-dimensional clustering of particles can not occur, two-dimensional cuts or projections of the evolving three-dimensional density can display inhomogeneities similar to the ones observed in sinking ocean particles.


2011 ◽  
Vol 207 (1-3) ◽  
pp. 461-464 ◽  
Author(s):  
M. Jalaal ◽  
H. Bararnia ◽  
G. Domairry

1996 ◽  
Vol 118 (1) ◽  
pp. 46-52 ◽  
Author(s):  
A. N. Williams

The hydrodynamic properties of a flexible floating breakwater consisting of a membrane structure attached to a small float restrained by moorings are investigated theoretically. The tension in the membrane is achieved by hanging a clump weight from its lower end. The fluid motion is idealized as linearized, two-dimensional potential flow and the equation of motion of the breakwater is taken to be that of a one-dimensional membrane of uniform mass per unit length subjected to a constant axial force. The boundary integral equation method is applied to the fluid domain, and the dynamic behavior of the breakwater is also described through an appropriate Green function. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection properties of the structure depend strongly on the membrane length, the magnitude of the clump weight, and the mooring line stiffness, while the membrane weight and excess buoyancy of the system are of lesser importance.


Author(s):  
Andrew Lehmann ◽  
Mark Wardle

AbstractWe characterise steady, one-dimensional fast and slow magnetohydrodynamic (MHD) shocks using a two-fluid model. Fast MHD shocks are magnetically driven, forcing ions to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs=2–4 km/s and preshock Hydrogen nuclei densities nH = 102-4 cm−3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of 12CO rotational lines show that high-J lines, above J = 6 → 5, are more strongly excited in slow MHD shocks.


Sign in / Sign up

Export Citation Format

Share Document