Transition to turbulent electric current sheet reconnection

1997 ◽  
Vol 57 (1) ◽  
pp. 35-45 ◽  
Author(s):  
RUSSELL B. DAHLBURG

Electric current sheets develop in the solar corona when different flux systems come into contact. At these sheets magnetic energy is transformed into heat and kinetic energy by means of reconnection. We have previously demonstrated how to accelerate neutral sheet energy conversion by means of a transition to turbulent reconnection via ideal, three-dimensional secondary instabilities, as conjectured by Montgomery. In this paper we describe how our previous results are modified by the presence of a finite mean sheetwise magnetic field. We find a stabilization from this field, due to a decrease in energy transfer from the basic magnetic field to the three-dimensional perturbed fields. An increase in perturbed dissipative energy losses is also observed.

1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2021 ◽  
Author(s):  
Felix Gerick ◽  
Dominique Jault ◽  
Jerome Noir

<p> Fast changes of Earth's magnetic field could be explained by inviscid and diffusion-less quasi-geostrophic (QG) Magneto-Coriolis modes. We present a hybrid QG model with columnar flows and three-dimensional magnetic fields and find modes with periods of a few years at parameters relevant to Earth's core. These fast Magneto-Coriolis modes show strong focusing of their kinetic and magnetic energy in the equatorial region, while maintaining a relatively large spatial structure along the azimuthal direction. Their properties agree with some of the observations and inferred core flows. We find additionally, in contrast to what has been assumed previously, that these modes are not affected significantly by magnetic diffusion. The model opens a new way of inverting geomagnetic observations to the flow and magnetic field deep within the Earth's outer core.</p>


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasios Pateras ◽  
Ross Harder ◽  
Sohini Manna ◽  
Boris Kiefer ◽  
Richard L. Sandberg ◽  
...  

Abstract Magnetostriction is the emergence of a mechanical deformation induced by an external magnetic field. The conversion of magnetic energy into mechanical energy via magnetostriction at the nanoscale is the basis of many electromechanical systems such as sensors, transducers, actuators, and energy harvesters. However, cryogenic temperatures and large magnetic fields are often required to drive the magnetostriction in such systems, rendering this approach energetically inefficient and impractical for room-temperature device applications. Here, we report the experimental observation of giant magnetostriction in single-crystal nickel nanowires at room temperature. We determined the average values of the magnetostrictive constants of a Ni nanowire from the shifts of the measured diffraction patterns using the 002 and 111 Bragg reflections. At an applied magnetic field of 600 Oe, the magnetostrictive constants have values of λ100 = −0.161% and λ111 = −0.067%, two orders of magnitude larger than those in bulk nickel. Using Bragg coherent diffraction imaging (BCDI), we obtained the three-dimensional strain distribution inside the Ni nanowire, revealing nucleation of local strain fields at two different values of the external magnetic field. Our analysis indicates that the enhancement of the magnetostriction coefficients is mainly due to the increases in the shape, surface-induced, and stress-induced anisotropies, which facilitate magnetization along the nanowire axis and increase the total magnetoelastic energy of the system.


1958 ◽  
Vol 6 ◽  
pp. 499-503 ◽  
Author(s):  
P. A. Sweet

The expression ∫∫∫all space ΔH2dv for a change in magnetic energy is shown to be incorrect when applied to a body carrying an electric current and situated in an external magnetic field. A modified expression is derived.Chandrasekhar's form of the virial theorem in a magnetic field is extended to the case where an external magnetic field is present.


2012 ◽  
Vol 703 ◽  
pp. 238-254 ◽  
Author(s):  
Luke A. K. Blackbourn ◽  
Chuong V. Tran

AbstractWe study two-dimensional magnetohydrodynamic turbulence, with an emphasis on its energetics and inertial-range scaling laws. A detailed spectral analysis shows that dynamo triads (those converting kinetic into magnetic energy) are associated with a direct magnetic energy flux while anti-dynamo triads (those converting magnetic into kinetic energy) are associated with an inverse magnetic energy flux. As both dynamo and anti-dynamo interacting triads are integral parts of the direct energy transfer, the anti-dynamo inverse flux partially neutralizes the dynamo direct flux, arguably resulting in relatively weak direct energy transfer and giving rise to dynamo saturation. This result is consistent with a qualitative prediction of energy transfer reduction due to Alfvén wave effects by the Iroshnikov–Kraichnan theory (which was originally formulated for magnetohydrodynamic turbulence in three dimensions). We numerically confirm the correlation between dynamo action and direct magnetic energy flux and investigate the applicability of quantitative aspects of the Iroshnikov–Kraichnan theory to the present case, particularly its predictions of energy equipartition and ${k}^{\ensuremath{-} 3/ 2} $ spectra in the energy inertial range. It is found that for turbulence satisfying the Kraichnan condition of magnetic energy at large scales exceeding total energy in the inertial range, the kinetic energy spectrum, which is significantly shallower than ${k}^{\ensuremath{-} 3/ 2} $, is shallower than its magnetic counterpart. This result suggests no energy equipartition. The total energy spectrum appears to depend on the energy composition of the turbulence but is clearly shallower than ${k}^{\ensuremath{-} 3/ 2} $ for $r\approx 2$, even at moderate resolutions. Here $r\approx 2$ is the magnetic-to-kinetic energy ratio during the stage when the turbulence can be considered fully developed. The implication of the present findings is discussed in conjunction with further numerical results on the dependence of the energy dissipation rate on resolution.


2017 ◽  
Vol 83 (1) ◽  
Author(s):  
Miho Janvier

Solar flares are powerful radiations occurring in the Sun’s atmosphere. They are powered by magnetic reconnection, a phenomenon that can convert magnetic energy into other forms of energy such as heat and kinetic energy, and which is believed to be ubiquitous in the universe. With the ever increasing spatial and temporal resolutions of solar observations, as well as numerical simulations benefiting from increasing computer power, we can now probe into the nature and the characteristics of magnetic reconnection in three dimensions to better understand the phenomenon’s consequences during eruptive flares in our star’s atmosphere. We review in the following the efforts made on different fronts to approach the problem of magnetic reconnection. In particular, we will see how understanding the magnetic topology in three dimensions helps in locating the most probable regions for reconnection to occur, how the current layer evolves in three dimensions and how reconnection leads to the formation of flux ropes, plasmoids and flaring loops.


1989 ◽  
Vol 104 (2) ◽  
pp. 357-360
Author(s):  
G.M. Simnett

AbstractIt has been proposed that non-thermal ions dominate the energy transfer at the onset of solar flares. Here we examine this hypothesis in the context of flares on dMe stars. If the magnetic field in the stellar corona is significantly larger than that in the solar corona, and if strong fields in the photosphere, analagous to active regions, are absent, then a self-consistent explanation of stellar flares may be formulated.


2005 ◽  
Vol 23 (3) ◽  
pp. 831-851 ◽  
Author(s):  
K. Sigsbee ◽  
J. A. Slavin ◽  
R. P. Lepping ◽  
A. Szabo ◽  
M. Øieroset ◽  
...  

Abstract. From 1995 to 2000, the Wind spacecraft spent over 500h in the magnetotail, much of it within ~2x104km of the predicted location of the neutral sheet. Wind passed through the near magnetotail at distances of -15 RE<X GSM<-6 RE on 35 occasions. Another 10 passes took place at distances of -30 RE<X GSM<-15 RE. We identified 65 dipolarization events in the Wind magnetic field data set between Y GSM~-16 and +16 RE based upon our requirements that the magnetic field inclination had to change by more than 15°, the maximum inclination angle had to be greater than 20°, and the inclination angle had to increase by a factor of at least 1.5. Most of the dipolarization events occurred in the pre-midnight region of the magnetotail and were accompanied by earthward flows with speeds greater than 100km/s. The properties of the dipolarization events did not depend upon the Y GSM position. However, they did vary with the distance to the neutral sheet. Isolated dipolarization events, defined as occurring more than 20min apart, were characterized by a decrease in Bx GSM and BTOTAL, and an increase in Bz GSM and the magnetic field inclination. Dipolarizations that occurred as part of a series of small dipolarizations spaced less than 20min apart were characterized by a transient increase in Bz GSM and the magnetic field inclination, but no significant change in Bx GSM and BTOTAL. The events consisting of a series of small dipolarizations occurred predominantly near midnight. We interpret these results in terms of two different modes of magnetotail convection: 1) a classical substorm pattern featuring storage of magnetic energy in the tail lobes which is explosively released at onset, and 2) a directly driven process.


1995 ◽  
Vol 299 ◽  
pp. 153-186 ◽  
Author(s):  
P. A. Davidson

It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-mental flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u). Third, this decline in relative dissipation, D / E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence.


2008 ◽  
Vol 599 ◽  
pp. 1-28 ◽  
Author(s):  
KRISTOPHER R. SCHUMACHER ◽  
JAMES J. RILEY ◽  
BRUCE A. FINLAYSON

The general equations necessary for a basic theoretical interpretation of the physics of turbulence in ferrofluids are presented. The equations are examined and show multiple novel turbulence aspects that arise in ferrofluids. For example, two new modes of turbulent kinetic energy and turbulent kinetic energy dissipation rate occur, and unique modes of energy conversion (rotational to/from translational kinetic energy and magnetic energy to/from turbulent kinetic energy) are exhibited in turbulent ferrofluid flows. Furthermore, it is shown that potential models for turbulence in ferrofluids are complicated by additional closure requirements from the five additional nonlinear terms in the governing equations. The equations are applied to turbulence of a ferrofluid in the presence of a steady magnetic field (as well as the case of no magnetic field) in order to identify the importance of the new terms. Results are presented for the enhanced anisotropy in the presence of a magnetic field, and results show how turbulence properties (both classical ones and new ones) vary with the strength of the magnetic field. Three different equations for the magnetization are examined and lead to different results at large magnitudes of the applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document