Phylogenetic position of the crustose Stereocaulon species

2014 ◽  
Vol 46 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Filip HÖGNABBA ◽  
Raquel PINO-BODAS ◽  
Anders NORDIN ◽  
Leena MYLLYS ◽  
Soili STENROOS

AbstractPhylogenetic relationships of Stereocaulon with emphasis on the crustose taxa were studied based on nuclear ribosomal ITS1–5.8S–ITS2 and partial beta-tubulin sequences. The placement of four of the six crustose species currently included in the genus has previously been confirmed based on molecular data. It has, however, remained unresolved whether the crustose growth form is a plesiomorphic or apomorphic feature within Stereocaulon, due to contradictory placements of the crustose species in earlier studies. The aim of this study was to clarify the position of the crustose species by including additional data, especially of S. nivale and S. plicatile, which have not been included in previous analyses. The inclusion of S. plicatile in the genus is of particular interest as it is the only species in the genus with submurifrom to muriform ascospores. Altogether 37 specimens representing 31 species of the ingroup, including all the crustose Stereocaulon species, were incorporated in the analyses. Conventional, as well as direct optimization parsimony, maximum likelihood and Bayesian analyses were performed. The results show that the crustose species do not form a monophyletic entity and that the crustose growth form is a plesiomorphic feature within Stereocaulon. The crustose S. nivale and S. plicatile are nested within the genus and their inclusion in Stereocaulon is thereby confirmed. The nested position of S. plicatile indicates that the submuriform to muriform spore type has been gained independently within the genus. Here, S. plicatile is also reported for the first time from Scandinavia.

2015 ◽  
Vol 29 (5) ◽  
pp. 473 ◽  
Author(s):  
Takafumi Nakano ◽  
Son Truong Nguyen

The family Salifidae is a predaceous leech taxon in the suborder Erpobdelliformes. Although Salifidae is widely distributed in the African, Oriental, Indo-Malayan, Sino-Japanese and Australasian regions, the phylogenetic relationships of the family Salifidae have never been tested using molecular data obtained from leeches collected from the family distributional range. A salifid species was collected for the first time in Vietnam, and relevant morphological and molecular data are presented here. Because the Vietnamese salifid species possesses unique morphological characteristics among the known salifid species, this species is herein described as a new species, Salifa motokawai, sp. nov. Phylogenetic analyses based on nuclear 18S rRNA and histone H3, as well as mitochondrial cytochrome c oxidase subunit I, tRNACys, tRNAMet, 12S rRNA, tRNAVal, 16S rRNA, tRNALeu and NADH dehydrogenase subunit 1 markers demonstrate that the Vietnamese salifid species is a close congener with the African Salifa perspicax and the Malagasy Linta be. Furthermore, molecular data revealed non-monophyly of the Asian salifid leeches. According to the observed phylogenetic relationships and morphological characteristics of the Vietnamese Salifa motokawai, sp. nov., the current classification of salifid taxa should be revised.


Author(s):  
Helena Wiklund ◽  
Arne Nygren ◽  
Fredrik Pleijel ◽  
Per Sundberg

Amphinomida is an ‘isolated’ clade within the polychaete group Aciculata and traditionally includes the families Amphinomidae, Archinomidae and Euphrosinidae. Archinomidae were erected for a single species, the hydrothermal vent polychaete Archinome rosacea. Originally, A. rosacea was assigned to Euphrosinidae although it shares more morphological similarities with Amphinomidae. In this study we assess the position of Archinome, Euphrosinidae and Amphinomidae by using molecular data from nuclear 18S rDNA and 28S rDNA. Parsimony, maximum likelihood and Bayesian analyses are performed on the nucleotide datasets covering in total 19 terminals from Amphinomidae, Euphrosinidae, Archinomidae and outgroups. Our results conclusively show that Euphrosinidae and Amphinomidae are sister taxa and that Archinome is sister to Chloeia within Amphinomidae. Based on these results the family name Archinomidae is treated as a junior synonym of Amphinomidae.


2006 ◽  
Vol 31 (3) ◽  
pp. 571-585 ◽  
Author(s):  
Maxim V. Kapralov ◽  
Hossein Akhani ◽  
Elena V. Voznesenskaya ◽  
Gerald Edwards ◽  
Vincent Franceschi ◽  
...  

The Chenopodiaceae includes taxa with both C3 and C4 photosynthesis with diverse kinds of Kranz anatomy and single-celled C4 species without Kranz anatomy; thus, it is of key importance for understanding evolution of C4 photosynthesis. All of the C4 genera except Atriplex, which belongs to Chenopodioideae, are in the Salicornioideae / Suaedoideae / Salsoloideae s.l. (including Camphorosmeae and Sclerolaeneae) clade. Our study focused on the relationships of the main lineages within this clade with an emphasis on the placement of the single cell functioning C4 genus Bienertia using maximum parsimony, maximum likelihood, and Bayesian inference phylogenetic analyses of the nuclear ribosomal ITS and five chloroplast DNA regions (atpB-rbcL, matK, psbB-psbH, rbcL, and trnL-trnF). Further we provide a detailed phylogeny of Alexandra and Suaeda based on ITS, atpB-rbcL, and psbB-psbH. Our molecular data provide strong statistical support for the monophyly of: (1) a Salicornioideae / Suaedoideae / Salsoloideae s.l. clade; (2) a Salicornioideae / Suaedoideae clade; (3) the subfamilies Salicornioideae, Suaedoideae (including Bienertia) and Salsoloideae s.l.; (4) the tribes Suaedeae, Salsoleae, and Camphorosmeae; (5) the Salicornieae if Halopeplideae is included; and (6) Suaeda if Alexandra is included. Alexandra lehmannii is therefore reclassified as Suaeda lehmannii and a new section of Suaeda is created, section Alexandra. There are four independent origins of C4 photosynthesis within the Suaedoideae including two parallel origins of Kranz C4 anatomy (in Suaeda sections Salsina s.l. and Schoberia) and two independent origins of C4 systems without Kranz anatomy (in Bienertia and in Suaeda section Borszczowia).


2020 ◽  
pp. 1-11
Author(s):  
Shinichi Nakahara ◽  
Kaylin Kleckner ◽  
Gerardo Lamas ◽  
Blanca Huertas ◽  
Keith R. Willmott

We here transfer an euptychiine taxon hitherto placed in the polyphyletic genus Magneuptychia Forster, 1964, to Caeruleuptychia Forster, 1964. Caeruleuptychia francisca (Butler, 1870), n. comb. is reclassified based on a morphology-based maximum likelihood analysis, which is consistent with ongoing analyses of molecular data. Two putative synapomorphic characters are identified for the “Caeruleuptychia umbrosa clade”, one of which appears to be an unusual characteristic of euptychiine butterflies and is tested by optimizing onto the maximum likelihood tree. We also discuss the systematic placement of three additional enigmatic Caeruleuptychia species. A lectotype is designated for Euptychia francisca, and the genitalia of this species are illustrated here for the first time.


2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Rung-Juen Lin ◽  
Michael F Braby ◽  
Yu-Feng Hsu

Abstract The life history, morphology, and biology of the immature stages and phylogenetic relationships of Rotunda rotundapex (Miyata & Kishida, 1990) are described and illustrated for the first time. The species is univoltine: eggs hatch in spring (March or April) and the life cycle from egg to adult is completed in about 3 wk, with larvae developing rapidly on young leaves of the host plants, Morus australis and to a lesser extent Broussonetia monoica (Moraceae), and adults emerging in April–May. Eggs are laid in clusters on twigs of the host plant, are covered by scales during female oviposition, and remain in diapause for the remainder of the year (i.e., for 10–11 mo). Larvae (all instars) are unique among the Bombycidae in that they lack a horn on abdominal segment 8. A strongly supported molecular phylogeny based on six genes (5.0 Kbp: COI, EF-1α, RpS5, CAD, GAPDH, and wgl) representing seven genera of Bombycinae from the Old World revealed that Rotunda is a distinct monotypic lineage sister to Bombyx. This phylogenetic position, together with morphological data of the immature stages (egg and larval chaetotaxy), supports the current systematic classification in which the species rotundapex has been placed in a separate genus (Rotunda) from Bombyx in which it was previously classified.


2010 ◽  
Vol 79 (3) ◽  
pp. 93-106 ◽  
Author(s):  
Juliana Sterli

The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic relationships of extant and extinct turtles based on the most comprehensive phylogenetic dataset of morphological and molecular data analyzed to date. Parsimony analyses were conducted for different partitions of data (molecular and morphological) and for the combined dataset. In the present analysis, separate analyses of the molecular data always retrieve Pleurodira allied to Trionychia. Separate analysis of the morphological dataset, by contrast, depicts a more traditional arrangement of taxa, with Pleurodira as the sister group of Cryptodira, being Chelonioidea the most basal cryptodiran clade. The simultaneous analysis of all available data retrieves all major extant clades as monophyletic, except for Cryptodira given that Pleurodira is retrieved as the sister group of Trionychia. The paraphyly of Cryptodira is an unorthodox result, and is mainly caused by the combination of two factors. First, the molecular signal allies Pleurodira and Trionychia. Second, the morphological data with extinct taxa locates the position of the root of crown-group Testudines in the branch leading to Chelonioidea. This study highlights major but poorly explored topics of turtle evolution: the alternate position of Pleurodira and the root of crown turtles. The diversification of crown turtles is characterized by the presence of long external branches and short internal branches (with low support for the internal nodes separating the major clades of crown turtles), suggesting a rapid radiation of this clade. This rapid radiation is also supported by the fossil record, because soon after the appearance of the oldest crown-group turtles (Middle-Late Jurassic of Asia) the number and diversity of turtles increases remarkably. This evolutionary scenario of a rapid diversification of modern turtles into the major modern lineages is likely the reason for the difficulty in determining the interrelationships and the position of the root of crown-group turtles.


Nematology ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 611-627 ◽  
Author(s):  
Oleksandr Holovachov ◽  
Sven Boström ◽  
Irma Tandingan De Ley ◽  
Cymphonee Robinson ◽  
Manuel Mundo-Ocampo ◽  
...  

Descriptions of three known species of Cynura, i.e., C. cerambus, C. klunderi and C. papillata, are given, including SEM micrographs of C. cerambus and a tabular compendium for all species of the genus. The phylogenetic relationships of C. klunderi are inferred from molecular data. Bayesian analyses of small subunit (SSU) of rRNA sequences support a position nested among the Plectidae suggesting the secondary simplification in the morphology of pharyngeal valvular apparatus in Cynura and the ‘return’ from a terrestrial to a marine environment in this genus.


Phytotaxa ◽  
2017 ◽  
Vol 302 (2) ◽  
pp. 101 ◽  
Author(s):  
FABIO RENATO BORGES ◽  
ORLANDO NECCHI JR

South American studies on the genus Chara are relatively scarce, most consisting of floristic surveys and using only traditional morphological characters. This study is a first approach to the systematics of the genus Chara applying modern techniques (DNA sequences and oospore SEM analyses) in addition to the alpha-taxonomy investigations that have been conducted in Brazil. Twelve populations of Chara were analyzed from the midwest and southeast regions of Brazil. Sequences of three molecular markers were applied to infer phylogenies. The ultrastructure of the oospore wall and currently used morphological characters were analyzed for Chara populations. Maximum likelihood and Bayesian analyses of sequences of rbcL, ITS2, and matK were congruent in that they grouped the species in six clades, each representing one species: Chara braunii C.C. Gmelin, C. foliolosa C.L.Willdenow, C. guairensis R.Bicudo, C. haitensis M.P.J.F. Turpin, C. hydropitys H. Reichenbach and C. rusbyana M. Howe. Morphological characters, including ultrastructure of oospore wall, provided good evidences to characterize each species. Molecular data supported the recent view that some traditional infra-generic taxa (e.g. subgenus Charopsis and subsection Willdenowia) are not supported in phylogenetic analyses, whereas some species (e.g. C. foliolosa, C. haitensis, C. hydropitys and C. rusbyana previously considered as varieties and forms of C. zeylanica) were consistently distinguished in the analyses for the three molecular markers.


2021 ◽  
Vol 78 ◽  
pp. 1-16
Author(s):  
Firouzeh Bordbar ◽  
Tim M. Upson

A review of the native Iranian species of Lavandula is presented, including the first recorded occurrence of L. pubescens, new distribution records for L. coronopifolia, and a detailed description and observations of the poorly known endemic L. sublepidota. The phylogenetic relationships of several taxa, including Lavandula sublepidota and L. hasikensis from Oman, are investigated for the first time using molecular data (matK and ITS regions), and changes to the sectional classification are proposed.


ZooKeys ◽  
2018 ◽  
Vol 781 ◽  
pp. 1-17 ◽  
Author(s):  
Hee-Min Yang ◽  
Ronald Sluys ◽  
Masaharu Kawakatsu ◽  
Gi-Sik Min

For the first time, molecular sequences of the 18S ribosomal DNA were generated for representatives of the genera Obrimoposthia Sluys & Ball, 1989 and Paucumara Sluys, 1989 of the suborder of the marine triclads, or Maricola, by analyzing the species Obrimoposthiawandeli (Hallez, 1906) and Paucumaratrigonocephala (Ijima & Kaburaki, 1916). On the basis of this molecular data the phylogenetic position of these two genera in the phylogenetic tree of the Maricola was determined and compared with their position in the phylogeny based on the analysis of anatomical features. New records for these two species are documented and their taxonomic status is determined on the basis of histological studies.


Sign in / Sign up

Export Citation Format

Share Document