The Organic carbon content of gravel bed herring spawning grounds and the impact of herring spawn deposition

Author(s):  
Ian R. Napier

The dry weight and organic carbon content of eggs and components of Clyde spring herring eggs were measured at intervals during their development. Comparison with previously published data suggests that an increase has occurred in the weight of these eggs over the past thirty years. It is clear that only a small proportion of the material deposited in the form of herring spawn actually remains attached to the substratum when the larvae hatch and so is available for potential integration into the benthic food web. This was confirmed by the determination at intervals over two years of the organic carbon content of the gravel sediments on spawning grounds of the Clyde spring herring. Although the deposition of herring spawn resulted in an immediate marked increase in the carbon content of the spawning ground sediments, carbon levels quickly returned to pre-spawning levels and there was no evidence of any permanent or long lasting increase. This held true when the spawn died and decayed in situ and even when it was mixed into the sediment by wave action. The rapid decrease in carbon levels is attributed to the strong water movements which frequently occur over the spawning grounds.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1871 ◽  
Author(s):  
Porntip Puttaso ◽  
Weravart Namanusart ◽  
Kanjana Thumanu ◽  
Bhanudacha Kamolmanit ◽  
Alain Brauman ◽  
...  

Leaf litter plays a major role in carbon and nutrient cycling, as well as in fueling food webs. The chemical composition of a leaf may directly and indirectly influence decomposition rates by influencing rates of biological reactions and by influencing the accumulation of soil organic carbon content, respectively. This study aimed to assess the impact of the chemical composition of rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) leaves on various soil properties of different ages of rubber (4–5, 11–12, and 22–23 year-old). Synchrotron-based Fourier transform infrared microspectroscopy (Sr-FTIR) was utilized for analyzing the chemical composition of plant leaves. The Sr-FTIR bands illustrated that the epidermis of rubber leaves from 4–5-year-old trees was found to contain a high quantity of polysaccharides while mesophyll from 22–23-year-old trees had a large number of polysaccharides. The change in soil properties in the older rubber plantation could be attributed to its chemical composition. The change in soil properties across all tree ages, i.e., increased litter and organic carbon content, was a relatively strong driver of soil biota evolution. The aliphatic of C-H in the leaves showed high correlation with soil organic carbon (SOC) and permanganate-oxidizable C (POXC) from 22–23 year-old trees. This study shows the differences in the organic chemical composition of leaves that are consequential to soil organic carbon.


1986 ◽  
Vol 66 (4) ◽  
pp. 721-730 ◽  
Author(s):  
E. DE JONG ◽  
C. WANG ◽  
H. W. REES

137Cs, solum data and the USLE were used to estimate soil erosion on three medium-textured soils in New Brunswick that had been in nearly continuous potato monoculture over the past 15 yr. Sampling transects were located on slopes ranging from 425 to 1040 m long, and from 4.8 to 6.0% slope. Ten equally spaced sites were sampled on each transect. The 137Cs data were used to divide the sampling sites into four groups: deposition, little erosion or deposition, moderately eroded and severely eroded areas. The four groups generally agreed well with soil profile properties. Solum, A horizon thickness and organic carbon content of the A horizon all decreased going from depositional sites to sites with severe erosion. Variations in A horizon thickness and organic carbon content explained about 65% of the variation in 137Cs. Soil losses predicted by the USLE were better correlated with soil losses calculated from 137Cs when the 137Cs data were used to delineate slope segments that were subject to erosion than when 137Cs and USLE soil losses were calculated on a field basis. The USLE overestimated soil losses at high erosion rates. Key words: Erosion, deposition, 137Cs, USLE, soil profile


2012 ◽  
Vol 92 (3) ◽  
pp. 413-418 ◽  
Author(s):  
Thomas E. Fenton

Fenton, T. E. 2012. The impact of erosion on the classification of Mollisols in Iowa. Can. J. Soil Sci. 92: 413–418. The fertile black soils in the Great Plains and Western States of the United States are dark brown Chernozems in the Canadian system of soil taxonomy and Mollisols, when a mollic epipedon is present, according to the United States soil taxonomy. Other primary criteria are organic carbon content, color, structure, and thickness of the mollic epipedon. Accelerated erosion can affect all of these properties and is especially critical for soils that have slope gradients of more than 2%. Accelerated erosion and erosion phases are recognized in field mapping based on the amount of A horizon remaining but criteria provided in the Soil Taxonomy guidelines conflict with procedures outlined in the Soil Survey Field Manual and result in a dichotomy between the classification system and field mapping practices. Soil map unit data for the five most extensive Mollisol soil series in Iowa that have multiple phases of slope and erosion were summarized and variations between the taxonomic and survey principles were identified. Eroded units comprise 26 to 77% of the total mapped area of the series studied and do not qualify as Mollisols under the taxonomic system. However, under the principle of following the genetic thread to classify soils, the taxonomic system should be modified to accommodate the eroded units that have the same genetic pathway as their uneroded counterparts. This could be accomplished by placing primary emphasis on the organic carbon content and waiving the color requirement for eroded soil map units.


Carbon ◽  
2016 ◽  
Vol 105 ◽  
pp. 572-585 ◽  
Author(s):  
M.N. Ess ◽  
D. Ferry ◽  
E.D. Kireeva ◽  
R. Niessner ◽  
F.-X. Ouf ◽  
...  

Author(s):  
Ekaterina Voloshchuk ◽  
Ekaterina Voloshchuk ◽  
Tatjana Eremina ◽  
Tatjana Eremina ◽  
Alexey Isaev ◽  
...  

Macrofauna is supposed to influence on physic-chemical characteristics of the sea bottom sediments. Through its bioturbation mechanism porosity, area of oxygenated layer and oxygen penetration depth have increased. This lead to alterations in nutrient cycling as well as improvement in redox conditions which define direction of fluxes in the sediments. In oxic conditions phosphorus is transformed into particulate form and thus, its retention and burial increase. In contrary, denitrification is getting weaker and nitrogen returns into the water. The impact of benthic organisms bioirrigation activity on other chemical components in solid sediments is not sufficiently studied. Present investigations were carried out for the most abundant benthic species in the Gulf of Finland Marenzelleria spp. Those polychaetes are active turbators and their irrigation effect lead to significant changes in chemical compounds in the solid sediment. On the basis of statistical analysis of data on vertical distribution of organic carbon content, total iron and manganese in solid sediments and abundance of Marenzelleria spp. there was found that polychaetes have a significant impact on organic carbon content, while for total iron and manganese such regularity is not revealed.


Author(s):  
Ekaterina Voloshchuk ◽  
Ekaterina Voloshchuk ◽  
Tatjana Eremina ◽  
Tatjana Eremina ◽  
Alexey Isaev ◽  
...  

Macrofauna is supposed to influence on physic-chemical characteristics of the sea bottom sediments. Through its bioturbation mechanism porosity, area of oxygenated layer and oxygen penetration depth have increased. This lead to alterations in nutrient cycling as well as improvement in redox conditions which define direction of fluxes in the sediments. In oxic conditions phosphorus is transformed into particulate form and thus, its retention and burial increase. In contrary, denitrification is getting weaker and nitrogen returns into the water. The impact of benthic organisms bioirrigation activity on other chemical components in solid sediments is not sufficiently studied. Present investigations were carried out for the most abundant benthic species in the Gulf of Finland Marenzelleria spp. Those polychaetes are active turbators and their irrigation effect lead to significant changes in chemical compounds in the solid sediment. On the basis of statistical analysis of data on vertical distribution of organic carbon content, total iron and manganese in solid sediments and abundance of Marenzelleria spp. there was found that polychaetes have a significant impact on organic carbon content, while for total iron and manganese such regularity is not revealed.


2020 ◽  
Vol 31 (5) ◽  
pp. 557-567 ◽  
Author(s):  
Surajit Mondal ◽  
Debashis Chakraborty ◽  
Kalikinkar Bandyopadhyay ◽  
Pramila Aggarwal ◽  
Dharamvir Singh Rana

2020 ◽  
Vol 141 ◽  
pp. 01002
Author(s):  
Warapong Tungittiplakorn ◽  
Viranart Kongbua ◽  
Anyamanee Tulaphan ◽  
Kannika Kaewtawee

Engineered nanoparticles (ENPs) have been reported for their potential to enhance in situ soil remediation due to their size and stability in water. These properties allow them to pass through soils with minimal loss in soil flushing or pump-and-treat process. The success of nanoparticle-facilitated soil flushing depends on the mobility of nanoparticles in the soil matrix. However, organic carbon content and soil texture can affect the mobility of nanoparticles in soils. This study compared the mobility of polyethylene glycol-modified urethane acrylate (PMUA) nanoparticles in three types of soils with varying organic contents. The results of two consecutive injection experiments showed that the recovery of injected nanoparticles through a soil column were 91 and 97% for sandy soil with carbon content of 0.01%, 81 and 85% for clay loam soil with organic carbon content of 1.20% and 67 and 73% for clay soil with organic carbon content of 3.25%. Furthermore, the batch experiments showed that the distribution coefficient (Kd) of PMUA nanoparticles between water and sandy soil, clay loam soil, and clay soil were 1.86, 2.34 and 3.01 mL/g, respectively. This conforms to the column experiment results and confirms that the increase in organic carbon content in soils increases the adsorption of PMUA nanoparticles, and therefore decreases the mobility of the nanoparticles through soils. Moreover, the distribution coefficient from batch experiments could be used to predict the mobility of PMUA nanoparticles in soils, and the viability of in situ PMUA-facilitated soil flushing method for specific contaminated soils.


2008 ◽  
Vol 88 (4) ◽  
pp. 533-541 ◽  
Author(s):  
Hassan Al Majou ◽  
Ary Bruand ◽  
Odile Duval

Most pedotransfer functions (PTF) developed over the past three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite the high number of PTFs published, most being class- or continuous-PTFs, the accuracy of prediction remains limited. In this study, we compared the performance of different class- and continuous-PTFs developed with a regional database. Results showed that the use of in situ volumetric water content at field capacity as a predictor led to much better estimation of water retention properties compared with using predictors derived from the texture, or the organic carbon content and bulk density. This was true regardless of the complexity of the PTFs developed. Results also showed that the best prediction quality was achieved by using the in situ volumetric water content at field capacity after stratification by texture. Comparison of in situ volumetric water content at field capacity, with the water retained at different matric potentials as measured in the laboratory, showed field capacity to approximate 100 hPa, whatever the soil texture. Finally, the lack accuracy of PTFs that do not use the in situ volumetric water content at field capacity as predictor did not appear due to the test soils being unrepresentative of the soils used to develop the PTFs, but were instead related to poor correlations between the predictors used and the water retention properties. Key words: Pedotransfer functions, root mean square error, mean error of prediction, standard deviation of prediction, texture, bulk density, organic carbon content


Sign in / Sign up

Export Citation Format

Share Document