Re-investigation of Polyoeca dichotoma and Acanthoeca spectabilis (Acanthoecidae: Choanoflagellida)

Author(s):  
Shigemitsu Hara ◽  
Eiji Takahashif

Light and electron microscopical reinvestigation of Polyoeca dichotoma Kent revealed that Acanthoecopsis spiculifera Norris, the type species of the genus, is a synonym for Polyoeca dichotoma. Since this step invalidates the use of the name Acanthoecopsis, a new genus Acanthocorbis was established for the three species formerly included in Acanthoecopsis.The three dimensional arrangement of costal strips forming the loricae of Polyoeca dichotoma and Acanthoeca spectabilis Ellis were examined by scanning electron microscopy. The arrangement of costal strips were similar in both species. The longitudinal costal strips and those forming the spines were arranged outside the supplementary costae and those of the transverse bonds.

Author(s):  
Piotr Kuklinski ◽  
Paul D. Taylor

Study of type and other material using scanning electron microscopy has permitted the recognition of three new species and one new genus of Arctic and boreal calloporid anascans. Originally described from the Gulf of St Lawrence, Callopora whiteavesi is reassigned to Flustrellaria, a calloporid genus not previously reported extant. Material from north-east Greenland misidentified as C. whiteavesi is described as C. weslawski sp. nov. The new genus Septentriopora is introduced for calloporids lacking pore chambers, with a distolateral pair of small interzooidal avicularia that face proximally or proximolaterally, and a reduced ovicell. The type species of Septentriopora, Tegella nigrans, has frequently been misidentified. Many of the supposed records of this species belong to two other species, described here as Septentriopora karasi sp. nov. and S. denisenkoae sp. nov. The apparent ovicell in S. karasi is particularly unusual, being vestigial and kenozooid-like in morphology.


2013 ◽  
Vol 151 (3) ◽  
pp. 517-533 ◽  
Author(s):  
DAVID M. MARTILL ◽  
PETER J. A. DEL STROTHER ◽  
FLORENCE GALLIEN

AbstractAn association of diverse hollow spines and dermal denticles (ichthyoliths) from the Carboniferous (Westphalian) of Todmorden, Yorkshire, England are attributed to a new genus of enigmatic shark that may lie close to Listracanthus Newberry & Worthen, 1870. Scanning electron microscopy shows that denticle morphology is highly variable, but forms a morphocline including elongate multi-spined elements as well as robust dome-like stellate denticles and recurved spinose elements. Histological analysis suggests an absence of enameloid. Continuous variation of form between elongate multi-cusped spines to boss-like circular denticles shows that all previously described Palaeozoic species of Listracanthus are probably junior synonyms of the type species L. hystrix Newberry & Worthen, 1870. The status of Listracanthus as a surviving ‘Lilliputian’ taxon after the Permian extinction is questioned. Although the new specimen has affinities with Listracanthus, significant differences in the form of the posterior spines on elongate denticles warrants its placement in the new genus Acanthorhachis gen. nov. The family Listracanthidae is erected to accommodate Listracanthus and Acanthorhachis.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
R. I. Johnsson-Hegyeli ◽  
A. F. Hegyeli ◽  
D. K. Landstrom ◽  
W. C. Lane

Last year we reported on the use of reflected light interference microscopy (RLIM) for the direct color photography of the surfaces of living normal and malignant cell cultures without the use of replicas, fixatives, or stains. The surface topography of living cells was found to follow underlying cellular structures such as nuceloli, nuclear membranes, and cytoplasmic organelles, making possible the study of their three-dimensional relationships in time. The technique makes possible the direct examination of cells grown on opaque as well as transparent surfaces. The successful in situ electron microprobe analysis of the elemental composition and distribution within single tissue culture cells was also reported.This paper deals with the parallel and combined use of scanning electron microscopy (SEM) and the two previous techniques in a study of living and fixed cancer cells. All three studies can be carried out consecutively on the same experimental specimens without disturbing the cells or their structural relationships to each other and the surface on which they are grown. KB carcinoma cells were grown on glass coverslips in closed Leighto tubes as previously described. The cultures were photographed alive by means of RLIM, then fixed with a fixative modified from Sabatini, et al (1963).


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


1994 ◽  
Vol 42 (5) ◽  
pp. 681-686 ◽  
Author(s):  
V Rummelt ◽  
L M Gardner ◽  
R Folberg ◽  
S Beck ◽  
B Knosp ◽  
...  

The morphology of the microcirculation of uveal melanomas is a reliable market of tumor progression. Scanning electron microscopy of cast corrosion preparations can generate three-dimensional views of these vascular patterns, but this technique sacrifices the tumor parenchyma. Formalin-fixed wet tissue sections 100-150 microns thick from uveal melanomas were stained with the lectin Ulex europaeus agglutinin I (UEAI) and proliferating cell nuclear antigen (PCNA) to demonstrate simultaneously the tumor blood vessels and proliferating tumor cells. Indocarbocyanine (Cy3) was used as a fluorophore for UEAI and indodicarbocyanine (Cy5) was used for PCNA. Double labeled sections were examined with a laser scanning confocal microscope. Images of both stains were digitized at the same 5-microns intervals and each of the two images per interval was combined digitally to form one image. These combined images were visualized through voxel processing to study the relationship between melanoma cells expressing PCNA and various microcirculatory patterns. This technique produces images comparable to scanning electron microscopy of cast corrosion preparations while permitting simultaneous localization of melanoma cells expressing PCNA. The microcirculatory tree can be viewed from any perspective and the relationship between tumor cells and the tumor blood vessels can be studied concurrently in three dimensions. This technique is an alternative to cast corrosion preparations.


Sign in / Sign up

Export Citation Format

Share Document