scholarly journals Hepatic fatty acid synthesis and partitioning: the effect of metabolic and nutritional state

2018 ◽  
Vol 78 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Leanne Hodson

When we consume dietary fat, a series of complex metabolic processes ensures that fatty acids are absorbed, transported around the body and used/stored appropriately. The liver is a central metabolic organ within the human body and has a major role in regulating fat and carbohydrate metabolism. Studying hepatic metabolism in human subjects is challenging; the use of stable isotope tracers and measurement of particles or molecules secreted by the liver such as VLDL-TAG and 3-hydroxybutyrate offers the best insight into postprandial hepatic fatty acid metabolism in human subjects. Diet derived fatty acids are taken up by the liver and mix with fatty acids coming from the lipolysis of adipose tissue, and those already present in the liver (cytosolic TAG) and fatty acids synthesised de novo within the liver from non-lipid precursors (known as de novo lipogenesis). Fatty acids are removed from the liver by secretion as VLDL-TAG and oxidation. Perturbations in these processes have the potential to impact on metabolic health. Whether fatty acids are partitioned towards oxidation or esterification pathways appears to be dependent on a number of metabolic factors; not least ambient insulin concentrations. Moreover, along with the phenotype and lifestyle factors (e.g. habitual diet) of an individual, it is becoming apparent that the composition of the diet (macronutrient and fatty acid composition) may play pivotal roles in determining if intra-hepatic fat accumulates, although what remains to be elucidated is the influence these nutrients have on intra-hepatic fatty acid synthesis and partitioning.

1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


2010 ◽  
Vol 299 (6) ◽  
pp. E918-E927 ◽  
Author(s):  
Michael C. Rudolph ◽  
Jenifer Monks ◽  
Valerie Burns ◽  
Meridee Phistry ◽  
Russell Marians ◽  
...  

The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase ( Fasn), insulin-induced gene 1 ( Insig1), mitochondrial citrate transporter ( Slc25a1), and stearoyl-CoA desaturase 2 ( Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α ( Acaca) and ATP citrate lyase ( Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.


2019 ◽  
Author(s):  
Michael Aregger ◽  
Keith A. Lawson ◽  
Maximillian Billmann ◽  
Michael Costanzo ◽  
Amy H. Y. Tong ◽  
...  

ABSTRACTThe de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases including cancer. While several translational efforts have focused on direct perturbation of de novo fatty acid synthesis, only modest responses have been associated with mono-therapies. Since cancer cells are intrinsically buffered to combat metabolic stress, cells may adapt to loss of de novo fatty acid biosynthesis. To explore cellular response to defects in fatty acid synthesis, we used pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in FASN, which catalyzes the formation of long-chain fatty acids. FASN mutant cells showed a strong dependence on lipid uptake that was reflected by negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking, and protein glycosylation. Further support for these functional relationships was derived from additional GI screens in query cell lines deficient for other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2, ACACA. Our GI profiles identified a potential role for a previously uncharacterized gene LUR1 (C12orf49) in exogenous lipid uptake regulation. Overall, our data highlights the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


1991 ◽  
Vol 260 (1) ◽  
pp. R153-R158 ◽  
Author(s):  
A. J. Bhatia ◽  
G. N. Wade

The effects of pregnancy and ovarian steroids on the in vivo distribution of newly synthesized fatty acids (incorporation of tritium from 3H2O into fatty acid) in Syrian hamsters (Mesocricetus auratus) were examined. During late, but not early, gestation hamsters had reduced levels of newly synthesized fatty acids in heart, liver, uterus, and white adipose tissues (parametrial and inguinal fat pads). Treatment of ovariectomized hamsters with estradiol + progesterone significantly decreased fatty acid synthesis-uptake in heart, liver, and inguinal white adipose tissue. Treatment with either estradiol or progesterone alone was without significant effect in any tissue. Pretreatment of hamsters with Triton WR-1339 (tyloxapol), an inhibitor of lipoprotein lipase activity and tissue triglyceride uptake, abolished the effects of estradiol + progesterone in white adipose tissue and heart but not in liver. Thus hamsters lose body fat during pregnancy in part because of decreased de novo lipogenesis. The effect of pregnancy on lipogenesis is mimicked by treatment with estradiol + progesterone but not by either hormone alone. Furthermore, it appears that the liver is the principal site of estradiol + progesterone action on lipogenesis in Syrian hamsters.


1991 ◽  
Vol 275 (1) ◽  
pp. 87-92 ◽  
Author(s):  
G F Gibbons ◽  
F J Burnham

The mass of very-low-density-lipoproteins (VLDL) triacylglycerol secreted from isolated hepatocytes was dependent on the nutritional state of the donor rats, and declined in the order sucrose-fed greater than chow-fed greater than polyunsaturated-fat-fed greater than starved. This was the case irrespective of the presence or absence of exogenous oleate. The contribution of newly synthesized fatty acids to the total mass of VLDL triacylglycerol also declined in the above order, and reflected the relative rates of fatty acid synthesis de novo in each of the groups. The contribution of exogenous oleate to VLDL triacylglycerol varied in a manner similar to that for newly synthesized fatty acid. However, the contribution either of exogenous oleate or of newly synthesized fatty acid never exceeded 17-20% of the total VLDL triacylglycerol fatty acid even in the sucrose-fed animals. The increased contribution of newly synthesized fatty acids in the sucrose-fed group was not sufficient to account for the increase in the total mass of VLDL triacylglycerol secreted. These results suggest that: (a) changes in the rate of triacylglycerol secretion are not a direct consequence of variations in the rate of fatty acid synthesis de novo; (b) in the short term, most of the triacylglycerol required for VLDL assembly and secretion is derived from an intracellular storage source: (c) the distribution of newly synthesized triacylglycerol between the cytosolic and secretory pools was similar irrespective of the source of fatty acids (i.e. synthesized de novo or exogenous).


2021 ◽  
Author(s):  
Felise G Adams ◽  
Claudia Trappetti ◽  
Jack K Waters ◽  
Maoge Zang ◽  
Erin B Brazel ◽  
...  

Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium's lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here we studied the mouse fatty acid landscape prior and post infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesises its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy.


Sign in / Sign up

Export Citation Format

Share Document