scholarly journals Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium

2010 ◽  
Vol 299 (6) ◽  
pp. E918-E927 ◽  
Author(s):  
Michael C. Rudolph ◽  
Jenifer Monks ◽  
Valerie Burns ◽  
Meridee Phistry ◽  
Russell Marians ◽  
...  

The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase ( Fasn), insulin-induced gene 1 ( Insig1), mitochondrial citrate transporter ( Slc25a1), and stearoyl-CoA desaturase 2 ( Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α ( Acaca) and ATP citrate lyase ( Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.

1991 ◽  
Vol 260 (1) ◽  
pp. R153-R158 ◽  
Author(s):  
A. J. Bhatia ◽  
G. N. Wade

The effects of pregnancy and ovarian steroids on the in vivo distribution of newly synthesized fatty acids (incorporation of tritium from 3H2O into fatty acid) in Syrian hamsters (Mesocricetus auratus) were examined. During late, but not early, gestation hamsters had reduced levels of newly synthesized fatty acids in heart, liver, uterus, and white adipose tissues (parametrial and inguinal fat pads). Treatment of ovariectomized hamsters with estradiol + progesterone significantly decreased fatty acid synthesis-uptake in heart, liver, and inguinal white adipose tissue. Treatment with either estradiol or progesterone alone was without significant effect in any tissue. Pretreatment of hamsters with Triton WR-1339 (tyloxapol), an inhibitor of lipoprotein lipase activity and tissue triglyceride uptake, abolished the effects of estradiol + progesterone in white adipose tissue and heart but not in liver. Thus hamsters lose body fat during pregnancy in part because of decreased de novo lipogenesis. The effect of pregnancy on lipogenesis is mimicked by treatment with estradiol + progesterone but not by either hormone alone. Furthermore, it appears that the liver is the principal site of estradiol + progesterone action on lipogenesis in Syrian hamsters.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Changjin Liu ◽  
Ying Li ◽  
Guowei Zuo ◽  
Wenchun Xu ◽  
Huanqing Gao ◽  
...  

Oleanolic acid (OA), contained in more than 1620 plants and as an aglycone precursor for naturally occurred and synthesized triterpenoid saponins, is used in China for liver disorders in humans. However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that treatment of rats with OA (25 mg/kg/day, gavage, once daily) over 10 weeks diminished liquid fructose-induced excess hepatic triglyceride accumulation without effect on total energy intake. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in OA-treated rats. Hepatic gene expression profile demonstrated that OA suppressed fructose-stimulated overexpression of sterol regulatory element-binding protein-(SREBP-) 1/1c mRNA and nuclear protein. In accord, overexpression of SREBP-1c-responsive genes responsible for fatty acid synthesis was also downregulated. In contrast, overexpressed nuclear protein of carbohydrate response element-binding protein and its target genes liver pyruvate kinase and microsomal triglyceride transfer protein were not altered. Additionally, OA did not affect expression of peroxisome proliferator-activated receptor-gamma- and -alpha and their target genes. It is concluded that modulation of hepatic SREBP-1c-mediated expression of the genes responsible for de novo fatty acid synthesis plays a pivotal role in OA-elicited diminishment of fructose-induced fatty liver in rats.


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


2019 ◽  
Author(s):  
Michael Aregger ◽  
Keith A. Lawson ◽  
Maximillian Billmann ◽  
Michael Costanzo ◽  
Amy H. Y. Tong ◽  
...  

ABSTRACTThe de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases including cancer. While several translational efforts have focused on direct perturbation of de novo fatty acid synthesis, only modest responses have been associated with mono-therapies. Since cancer cells are intrinsically buffered to combat metabolic stress, cells may adapt to loss of de novo fatty acid biosynthesis. To explore cellular response to defects in fatty acid synthesis, we used pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in FASN, which catalyzes the formation of long-chain fatty acids. FASN mutant cells showed a strong dependence on lipid uptake that was reflected by negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking, and protein glycosylation. Further support for these functional relationships was derived from additional GI screens in query cell lines deficient for other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2, ACACA. Our GI profiles identified a potential role for a previously uncharacterized gene LUR1 (C12orf49) in exogenous lipid uptake regulation. Overall, our data highlights the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


1972 ◽  
Vol 53 (2) ◽  
pp. 311-321 ◽  
Author(s):  
D. Y. WANG ◽  
R. C. HALLOWES ◽  
J. BEALING ◽  
C. R. STRONG ◽  
R. DILS

SUMMARY The effect of various hormones on the incorporation of [14C]acetate into the fatty acids of pregnant mouse mammary gland explants in organ culture was studied. Of the hormones insulin (I), ovine prolactin (P), bovine growth hormone (GH) and cortisol (F) tested singly, only insulin stimulated fatty acid synthesis. There was synergism between cortisol or prolactin with insulin. The greatest stimulation in fatty acid synthesis occurred when explants were incubated in a medium containing either I + F + P or I + F + GH. Analysis by radio-gas-liquid chromatography of the fatty acids synthesized by explants after 14C labelling, showed that the pattern of fatty acids formed in the presence of I + F was distinctly different from that produced in the presence of I + F + P or I + F + GH. In the presence of I + F, the pattern of fatty acids resembled that found in mouse adipose tissue, whilst with I + F + P or I + F + GH the pattern resembled that of mouse milk fat. Synthesis of RNA was essential for the stimulation of fatty acid synthesis in explants incubated in medium containing I + F + P or I + F + GH. Results obtained when DNA synthesis was blocked with mitomycin C suggest that mitosis is important for the induction of milk-fatty acid synthesis. Puromycin had no effect for up to 8 h on explants which had been previously cultured in medium containing I + F, I + F + P or I + F + GH. This suggests a slow turnover rate of the enzymes involved in the synthesis of milk fatty acids.


1974 ◽  
Vol 41 (2) ◽  
pp. 165-173 ◽  
Author(s):  
J. E. Storry ◽  
P. E. Brumby ◽  
A. J. Hall ◽  
V. W. Johnson

SummaryThe effects on rumen fermentation and milk-fat secretion of a dietary supplement of protected tallow given to 4 Friesian cows established on a low-roughage ration and with depressed milk fat is reported. The ratios of acetate to propionate in the rumen were unaffected by the supplement and remained typical of those associated with low-roughage diets in that the proportion of propionate was increased. The supplement produced almost complete recoveries in yield and content of milk fat without any increase in intramammary fatty-acid synthesis. The recoveries were due to transfer of about 20% of the total fatty acids of the tallow supplement. These results are discussed in relation to the effects of low-roughage diets on milk-fat secretion and it is concluded that in the ‘low-fat syndrome’ the capacity of the mammary gland to absorb preformed fatty acids is not impaired.


Sign in / Sign up

Export Citation Format

Share Document