scholarly journals The role of coffee derivatives in the regulation of pancreatic beta cell function in Type 2 Diabetes

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Kittiwadee Sarnsamak ◽  
Adele Costabile ◽  
Astrid Hauge-Evans

AbstractCoffee contains several components other than caffeine such as chlorogenic acids (CGAs), which are a family of polyphenols. Non-caffeinated coffee has been shown to reduce the risk of Type 2 diabetes, but it is unclear whether this effect is primarily due to a beneficial action on glucose regulation in peripheral tissues or whether it is partly mediated via a direct, functional modulation of insulin-secreting beta cells from the pancreas. This study aims to explore the specific role of coffee compounds derived from the polyphenolic family of CGAs (caffeic acid (CA) and ferulic acid (FA)) and their metabolites (dihydroferulic acid (diFA) and ferulic acid 4-O-sulphate (FA-4-OS)) in the regulation of beta cell survival and secretory function. To investigate this role, the cells were initially exposed to conditions of glucotoxicity (30mmol/l glucose), lipotoxicity (0.5mmol/l palmitate), glucolipotoxicity (30mmol/l glucose + 0.5mmol/l palmitate) and cytokine-induced cell toxicity (25U/ml IL1b + 500U/ml TNFα) for 20 and 48 h. INS1 beta cells were subsequently treated with or without 100nmol/l of the CGA compounds for 48 h followed by 20 h exposure to glucolipotoxicity to measure cellular ATP content and 3/7 caspase activity, respectively, as an indication of cell viability and apoptosis. Additionally, insulin release was assessed by radioimmunoassay following 1 h static incubations with or without CA, FA and metabolites. Data were analysed by One-Way ANOVA using GraphPad prism software (version 8). Glucotoxicity, lipotoxicity and glucotoxicity or glucolipotoxicity combined with cytokines significantly reduced INS1 cell viability compared to control at 20 and 48 h (p < 0.001 vs 11mmol/l glucose, p < 0.05; Glucotoxicity vs 11mmol/l glucose at 20 h, n = 6), whereas cytokines alone did not significantly affect cellular ATP content. Moreover, pre-treatment for 48 h with CGAs alone or in combination did not affect INS1 beta-cell viability under basal conditions (n = 3, p > 0.2). Additional exposure to glucolipotoxicity for 20 h significantly decreased beta cell viability and survival and was not alleviated by pre- or co-treatment with CGAs (n = 3, p > 0.05). However, insulin release in response to 1 h incubation with 20 mmol/l glucose + 10μmol/l forskolin (FSK) + 100μmol/l 3-isobutyl-1-methylxanthine (IBMX) was significantly higher from cells pre-treated with CA and FA combined compared to controls (7.64 + 2.89pg insulin/5,000 cells/h vs 2.17 + 0.35pg insulin/5,000 cells/h; p < 0.01 vs. 20mmol/l glucose + 10μmol/l FSK + 100μmol/l IBMX only, n = 5). The results suggest that CGA derivatives from coffee do not directly modulate INS1 beta cell viability and apoptosis whereas the compounds may play a role in the regulation of beta cell secretory function.

Diabetologia ◽  
2019 ◽  
Vol 63 (2) ◽  
pp. 395-409 ◽  
Author(s):  
Masaya Oshima ◽  
Séverine Pechberty ◽  
Lara Bellini ◽  
Sven O. Göpel ◽  
Mélanie Campana ◽  
...  

Abstract Aims/hypothesis During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-βH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. Methods EndoC-βH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. Results EndoC-βH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-βH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. Conclusions/interpretation The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. Data availability Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.


Author(s):  
Eva Decroli ◽  
Asman Manaf ◽  
Syafril Syahbuddin ◽  
Sarwono Waspadji ◽  
Dwisari Dillasamola

Objective: This study aimed to reveal differences in levels of survivin and Raf-1 kinase in prediabetes, controlled Type 2 diabetes mellitus (T2DM), uncontrolled T2DM, and their relationship with hemoglobin A1c (HbA1c) levels and serum triglyceride levels.Methods: This study was an observational study with a cross-sectional design. The study involved 60 people with T2DM who visited the endocrine and metabolic clinic and 30 prediabetes patients. The variables were survivin levels and Raf-1 kinase enzymes that examined using enzyme-linked immunosorbent assay techniques. HbA1c values are measured by high-performance liquid chromatography and triglyceride levels measured by enzymatic method.Results: Average levels of Raf-1 kinase were significantly higher in the prediabetes group, controlled T2DM, and uncontrolled T2DM (11.6±1.4 pg mL, 9.9±1.1 pg/mL, and 9.1±1.5 pg/mL). Survivin was significantly higher in the prediabetes group, controlled T2DM, and uncontrolled T2DM (5.4±0.4 pg mL, 5.0±0.2 pg/mL, and 4.7±0.1 pg/mL). There was no correlation between HbA1c with Raf-1 kinase levels (R=−0.215, p=0.250), but there was a correlation between HbA1c with serum survivin levels (R=−0.6, *p<0.05). There was a correlation between the levels of triglycerides with survivin but not with Raf-1 kinase (R=−0.267, *p=0.039).Conclusion: Survivin and Raf-1 kinase levels are lower in uncontrolled T2DM. This explained the role of survivin and Raf-1 kinase against enhancement of pancreatic beta-cell apoptosis in patients with T2DM.


Diabetologia ◽  
2020 ◽  
Vol 63 (10) ◽  
pp. 1990-1998 ◽  
Author(s):  
Guy A. Rutter ◽  
Eleni Georgiadou ◽  
Aida Martinez-Sanchez ◽  
Timothy J. Pullen

Abstract All forms of diabetes mellitus involve the loss or dysfunction of pancreatic beta cells, with the former predominating in type 1 diabetes and the latter in type 2 diabetes. Deeper understanding of the coupling mechanisms that link glucose metabolism in these cells to the control of insulin secretion is therefore likely to be essential to develop new therapies. Beta cells display a remarkable metabolic specialisation, expressing high levels of metabolic sensing enzymes, including the glucose transporter GLUT2 (encoded by SLC2A2) and glucokinase (encoded by GCK). Genetic evidence flowing from both monogenic forms of diabetes and genome-wide association studies for the more common type 2 diabetes, supports the importance for normal glucose-stimulated insulin secretion of metabolic signalling via altered ATP generation, while also highlighting unsuspected roles for Zn2+ storage, intracellular lipid transfer and other processes. Intriguingly, genes involved in non-oxidative metabolic fates of the sugar, such as those for lactate dehydrogenase (LDHA) and monocarboxylate transporter-1 ([MCT-1] SLC16A1), as well as the acyl-CoA thioesterase (ACOT7) and others, are selectively repressed (‘disallowed’) in beta cells. Furthermore, mutations in genes critical for mitochondrial oxidative metabolism, such as TRL-CAG1–7 encoding tRNALeu, are linked to maternally inherited forms of diabetes. Correspondingly, impaired Ca2+ uptake into mitochondria, or collapse of a normally interconnected mitochondrial network, are associated with defective insulin secretion. Here, we suggest that altered mitochondrial metabolism may also impair beta cell–beta cell communication. Thus, we argue that defective oxidative glucose metabolism is central to beta cell failure in diabetes, acting both at the level of single beta cells and potentially across the whole islet to impair insulin secretion.


Cell Calcium ◽  
2011 ◽  
Vol 50 (6) ◽  
pp. 481-490 ◽  
Author(s):  
James W. Ramadan ◽  
Stephen R. Steiner ◽  
Christina M. O’Neill ◽  
Craig S. Nunemaker

2021 ◽  
Vol 12 ◽  
Author(s):  
Chelsie Villanueva-Hayes ◽  
Steven J. Millership

Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and the epigenetic control of the expression of critical beta cell genes appears to play a major role in this decline. One such group of epigenetically-controlled genes, termed ‘imprinted’ genes, are characterised by transgenerational monoallelic expression due to differential allelic DNA methylation and play key functional roles within beta cells. Here, we review the evidence for this functional importance of imprinted genes in beta cells as well as their nutritional regulation by the diet and their altered methylation and/or expression in rodent models of diabetes and in type 2 diabetic islets. We also discuss imprinted genes in the context of the next generation, where dietary overnutrition in the parents can lead to their deregulation in the offspring, alongside beta cell dysfunction and defective glucose handling. Both the modulation of imprinted gene expression and the likelihood of developing type 2 diabetes in adulthood are susceptible to the impact of nutritional status in early life. Imprinted loci, therefore, represent an excellent opportunity with which to assess epigenomic changes in beta cells due to the diet in both the current and next generation.


2020 ◽  
Vol 295 (17) ◽  
pp. 5685-5700
Author(s):  
Irina X. Zhang ◽  
Jianhua Ren ◽  
Suryakiran Vadrevu ◽  
Malini Raghavan ◽  
Leslie S. Satin

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.


Diabetologia ◽  
2021 ◽  
Author(s):  
Felicia Gerst ◽  
Elisabeth Kemter ◽  
Estela Lorza-Gil ◽  
Gabriele Kaiser ◽  
Ann-Kathrin Fritz ◽  
...  

Abstract Aims/hypothesis Neonatal beta cells carry out a programme of postnatal functional maturation to achieve full glucose responsiveness. A partial loss of the mature phenotype of adult beta cells may contribute to a reduction of functional beta cell mass and accelerate the onset of type 2 diabetes. We previously found that fetuin-A, a hepatokine increasingly secreted by the fatty liver and a determinant of type 2 diabetes, inhibits glucose-stimulated insulin secretion (GSIS) of human islets. Since fetuin-A is a ubiquitous fetal glycoprotein that declines peripartum, we examined here whether fetuin-A interferes with the functional maturity of beta cells. Methods The effects of fetuin-A were assessed during in vitro maturation of porcine neonatal islet cell clusters (NICCs) and in adult human islets. Expression alterations were examined via microarray, RNA sequencing and reverse transcription quantitative real-time PCR (qRT-PCR), proteins were analysed by western blotting and immunostaining, and insulin secretion was quantified in static incubations. Results NICC maturation was accompanied by the gain of glucose-responsive insulin secretion (twofold stimulation), backed up by mRNA upregulation of genes governing beta cell identity and function, such as NEUROD1, UCN3, ABCC8 and CASR (Log2 fold change [Log2FC] > 1.6). An active TGFβ receptor (TGFBR)–SMAD2/3 pathway facilitates NICC maturation, since the TGFBR inhibitor SB431542 counteracted the upregulation of aforementioned genes and de-repressed ALDOB, a gene disallowed in mature beta cells. In fetuin-A-treated NICCs, upregulation of beta cell markers and the onset of glucose responsiveness were suppressed. Concomitantly, SMAD2/3 phosphorylation was inhibited. Transcriptome analysis confirmed inhibitory effects of fetuin-A and SB431542 on TGFβ-1- and SMAD2/3-regulated transcription. However, contrary to SB431542 and regardless of cMYC upregulation, fetuin-A inhibited beta cell proliferation (0.27 ± 0.08% vs 1.0  ± 0.1% Ki67-positive cells in control NICCs). This effect was sustained by reduced expression (Log2FC ≤ −2.4) of FOXM1, CENPA, CDK1 or TOP2A. In agreement, the number of insulin-positive cells was lower in fetuin-A-treated NICCs than in control NICCs (14.4 ± 1.2% and 22.3 ± 1.1%, respectively). In adult human islets fetuin-A abolished glucose responsiveness, i.e. 1.7- and 1.1-fold change over 2.8 mmol/l glucose in control- and fetuin-A-cultured islets, respectively. In addition, fetuin-A reduced SMAD2/3 phosphorylation and suppressed expression of proliferative genes. Of note, in non-diabetic humans, plasma fetuin-A was negatively correlated (p = 0.013) with islet beta cell area. Conclusions/interpretation Our results suggest that the perinatal decline of fetuin-A relieves TGFBR signalling in islets, a process that facilitates functional maturation of neonatal beta cells. Functional maturity remains revocable in later life, and the occurrence of a metabolically unhealthy milieu, such as liver steatosis and elevated plasma fetuin-A, can impair both function and adaptive proliferation of beta cells. Data availability The RNAseq datasets and computer code produced in this study are available in the Gene Expression Omnibus (GEO): GSE144950; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144950 Graphical abstract


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 534
Author(s):  
Jamie M. R. Tarlton ◽  
Steven Patterson ◽  
Annette Graham

Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document