scholarly journals Accuracy of resting metabolic rate prediction equations in female rugby players

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jack O'Neill ◽  
Ciara Walsh ◽  
Senan McNulty ◽  
Martha Corish ◽  
Hannah Gantly ◽  
...  

AbstractThis study aimed to investigate (1) the accuracy of resting metabolic rate (RMR) prediction equations in female rugby players on a group and individual level; and (2) whether individual differences in the accuracy of prediction equations is associated with muscle damage or energy availability.RMR was assessed in 14 female provincial and club rugby players (Age: 20–34 years, FFM: 47–63 kg, FM: 15–37%) training a minimum of twice per week. Participants attended the laboratory following an overnight fast and having avoided strenuous exercise for 24 hours. RMR was measured over 30 minutes by indirect calorimetry, and taken as the 10 minutes with the lowest variation. Body composition was assessed by air displacement plethysmography, muscle damage indicated by creatine kinase (CK) and risk of low energy availability assessed by the Low Energy Availability in Females Questionnaire. Accuracy of RMR prediction equations relevant to the general population and athletes were assessed including the Harris Benedict (1919), Cunningham (1980) and Ten Haaf FFM (2014) based equations.Measured RMR was 1748 ± 146 kcal/day (range: 1474–2010 kcal/day). Predicted RMR determined by the Harris-Benedict equation (1601 ± 120 kcal/day) was significantly lower than measured RMR (p < 0.001), whereas predicted RMR using the Cunningham (1753 ± 146 kcal/day, p = 0.89) and the Ten Haaf (1781 ± 115 kcal/day, p = 0.33) equations did not differ from measured RMR. On an individual level, 50% (n = 7), 86% (n = 12) and 79% (n = 11) of participants fell within 10% of the measured RMR value when RMR was predicted by Harris-Benedict, Cunningham and Ten Haaf equations respectively. CK values were 182 ± 155U/L (range: 25–490U/L). When correlations of the whole group were studied, the difference between predicted and measured RMR was not associated with CK (r = 0.13). However, in the two individuals who fell outside the 10% range of that predicted by the Cunningham equation, one above and one below, CK values were 428U/L and 166U/L respectively. Muscle damage (as indicated by a high CK value) could therefore be one potential explanation for the higher measured RMR in the individual who was above the Cunningham predicted value.In this cohort of female rugby players, the Cunningham equation showed the best accuracy on a group and individual level, suggesting this may be the most suitable prediction equation for this population. Further studies with larger sample sizes and investigating underlying reasons for why RMR measured values may differ from predicted values are needed.

2018 ◽  
Vol 28 (4) ◽  
pp. 434-439 ◽  
Author(s):  
George Wilson ◽  
Dan Martin ◽  
James P. Morton ◽  
Graeme L. Close

Despite consistent reports of poor bone health in male jockeys, it is not yet known if this is a consequence of low energy availability or lack of an osteogenic stimulus. Given the rationale that low energy availability is a contributing factor in low bone health, we tested the hypothesis that both hip and lumbar bone mineral density (BMD) should progressively worsen in accordance with the years of riding. In a cross-sectional design, male apprentice (n = 17) and senior (n = 14) jockeys (matched for body mass and fat-free mass) were assessed for hip and lumbar spine BMD, as well as both measured and predicted resting metabolic rate (RMR). Despite differences (p < .05) in years of race riding (3.4 ± 2 vs. 16.3 ± 6.8), no differences were apparent (p > .05) in hip (−0.9 ± 1.1 vs. −0.8 ± 0.7) and lumbar Z-scores (−1.3 ± 1.4 vs. −1.5 ± 1) or measured RMR (1,459 ± 160 vs. 1,500 ± 165 kcal/day) between apprentices and senior jockeys, respectively. Additionally, years of race riding did not demonstrate any significant correlations (p > .05) with either hip or lumbar spine BMD. Measured RMR was also not different (p > .05) from predicted RMR in either apprentice (1,520 ± 44 kcal/day) or senior jockeys (1,505 ± 70 kcal/day). When considered with previously published data examining underreporting of energy intake and direct assessments of energy expenditure, we suggest that low BMD in jockeys is not due to low energy availability per se but rather the lack of an osteogenic stimulus associated with riding.


2002 ◽  
Vol 57 (7) ◽  
pp. 440-442
Author(s):  
Nancy I. Williams ◽  
Dana L. Helmreich ◽  
David B. Parfitt ◽  
Anne Caston-Balderrama ◽  
Judy L. Cameron

Medicina ◽  
2019 ◽  
Vol 55 (10) ◽  
pp. 665 ◽  
Author(s):  
Lane ◽  
Hackney ◽  
Smith-Ryan ◽  
Kucera ◽  
Registar-Mihalik ◽  
...  

Background and Objectives: Relative energy deficiency in sport (RED-S) has been introduced as a broad-spectrum syndrome leading to possible dysfunction in numerous physiological systems, driven primarily by low energy availability (EA). Research in females has identified specific EA cut-points indicative of risk level for developing physiological and performance disturbances. Cut-points in males have yet to be evaluated. This study examined the prevalence of low EA in competitive (non-elite), recreationally trained (CRT) male endurance athletes. Materials and Methods: Subjects were 108 CRT (38.6 ± 13.8 y; 12.2 ± 5.4 h/wk training) male endurance athletes (runners, cyclists, triathletes) who completed a descriptive survey online via Qualtrics® and returned 3 day diet and exercise training records. EA was calculated from returned surveys and training records. Resting metabolic rate (RMR) and lean body mass (LBM) were estimated from self-reported survey data. Prevalence of risk group was categorized based on the female cut-points: at risk (AR) ≤30 kcal/kg LBM, moderate risk (MR) = 30–45 kcal/kg LBM, or no risk (NR) ≥45 kcal/kg LBM. Results: In this sample, 47.2% (n = 51) were classified as AR, 33.3% (n = 36) as MR, and 19.4% (n = 21) as NR for low EA. Cyclists had lower EA (26.9 ± 17.4 kcal/kg LBM, n = 45) than runners (34.6 ± 13.3 kcal/kg LBM, n = 55, p = 0.016) and all other sport categories (39.5 ± 19.1 kcal/kg LBM, n = 8, p = 0.037). Conclusions: The findings indicate this sample had a high prevalence of risk for low EA, at 47.2%. Only 19.4% of participants were at no risk, meaning ~80% of participants were at some degree of risk of experiencing low EA. Cyclists were at greater risk in this cohort of low EA, although why this occurred was unclear and is in need of further investigation. Future research should address whether the current female cut-points for low EA are appropriate for use in male populations.


Author(s):  
Charlotte P. Guebels ◽  
Lynn C. Kam ◽  
Gianni F. Maddalozzo ◽  
Melinda M. Manore

It is hypothesized that exercise-related menstrual dysfunction (ExMD) results from low energy availability (EA), defined as energy intake (EI)—exercise energy expenditure (EEE). When EI is too low, resting metabolic rate (RMR) may be reduced to conserve energy.Purpose:To measure changes in RMR and EA, using four methods to quantify EEE, before/after a 6-month diet intervention aimed at restoring menses in women with ExMD; eumenorrheic (Eumen) active controls (n = 9) were also measured.Methods:Active women with ExMD (n = 8) consumed +360 kcal/d (supplement) for 6 months; RMR was measured 2 times at 0 months/6 months. EI and total energy expenditure (TEE) were estimated using 7-day diet/activity records, with EA assessed using four methods to quantify EEE.Results:At baseline, groups did not differ for age, gynecological age, body weight, lean/fat mass, VO2max, EI and EA, but mean TEE was higher in ExMD (58.3 ± 4.4kcal/kgFFM/d; Eumen = 50.6 ± 2.4; p < .001) and energy balance (EB) more negative (–10.3 ± 6.9 kcal/kgFFM/d; Eumen=-3.0 ± 9.7; p = .049). RMR was higher in ExMD (31.3 ± 1.8 kcal/kgFFM/d) vs. Eumen (29.1 ± 1.9; p < .02). The intervention increased weight (1.6 ± 2.0kg; p = .029), but there were no significant changes in EA (0-month range = 28.2–36.7 kcal/kgFFM/d; 6-month range = 30.0–45.4; p > .05), EB (6 months = –0.7 ± 15.1 kcal/kgFFM/d) or RMR (0 months = 1515 ± 142; 6 months = 1522 ± 134 kcal/d). Assessment of EA varied dramatically (~30%) by method used.Conclusions:For the ExMD group, EI and weight increased with +360 kcal/d for 6 months, but there were no significant changes in EB, EA or RMR. No threshold EA value was associated with ExMD. Future research should include TEE, EB and clearly quantifying EEE (e.g.,>4 MET) if EA is measured.


2001 ◽  
Vol 86 (11) ◽  
pp. 5184-5193 ◽  
Author(s):  
Nancy I. Williams ◽  
Dana L. Helmreich ◽  
David B. Parfitt ◽  
Anne Caston-Balderrama ◽  
Judy L. Cameron

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2083
Author(s):  
María Villa ◽  
José G. Villa-Vicente ◽  
Jesus Seco-Calvo ◽  
Juan Mielgo-Ayuso ◽  
Pilar S. Collado

The aim of this study was to analyze dietary intake and body composition in a group of elite-level competitive rhythmic gymnasts from Spain. We undertook body composition and nutritional analysis of 30 elite gymnasts, divided into two groups by age: pre-teen (9–12 years) (n = 17) and teen (13–18 years) (n = 13). Measures of height, weight, and bioimpedance were used to calculate body mass index and percent body fat. Energy and nutrient intakes were assessed based on 7-day food records. The two groups had similar percentages of total body fat (pre-teen: 13.99 ± 3.83% vs. teen: 14.33 ± 5.57%; p > 0.05). The energy availability values for pre-teens were above the recommended values (>40 kcal/FFM/day) 69.38 ± 14.47 kcal/FFM/day, while those for the teens were much lower (34.7 ± 7.5 kcal/FFM/day). The distribution of the daily energy intake across the macronutrients indicates that both groups ingested less than the recommended level of carbohydrates and more than the recommended level of fat. Very low intakes of calcium and vitamin D among other micronutrients were also noted. The main finding is that teenage gymnasts do not consume as much energy as they need each day, which explains their weight and development. Moreover, they are at a high risk of developing low energy availability that could negatively impact their performance and future health.


Author(s):  
Jingjing Xue ◽  
Shuo Li ◽  
Rou Wen ◽  
Ping Hong

Background: The purpose of this study was to investigate the accuracy of the published prediction equations for determining level overground walking energy cost in young adults. Methods: In total, 148 healthy young adults volunteered to participate in this study. Resting metabolic rate and energy expenditure variables at speeds of 4, 5, and 6 km/h were measured by indirect calorimetry, walking energy expenditure was estimated by 3 published equations. Results: The gross and net metabolic rate per mile of level overground walking increased with increased speed (all P < .01). Females were less economical than males. The present findings revealed that the American College of Sports Medicine and Pandolf et al equations significantly underestimated the energy cost of overground walking at all speeds (all P < .01) in young adults. The percentage mean bias for American College of Sports Medicine, Pandolf et al, and Weyand et al was 12.4%, 16.8%, 1.4% (4 km/h); 21.6%, 15.8%, 7.1% (5 km/h); and 27.6%, 12%, 6.6% (6 km/h). Bland–Altman plots and prediction error analysis showed that the Weyand et al was the most accurate in 3 existing equations. Conclusions: The Weyand et al equation appears to be the most suitable for the prediction of overground walking energy expenditure in young adults.


1993 ◽  
Vol 3 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Janice Thompson ◽  
Melinda M. Manore ◽  
James S. Skinner

The resting metabolic rate (RMR) and thermic effect of a meal (TEM) were determined in 13 low-energy intake (LOW) and 11 adequate-energy intake (ADQ) male endurance athletes. The LOW athletes reported eating 1,490 kcal·day-1less than the ADQ group, while the activity level of both groups was similar. Despite these differences, both groups had a similar fat-free mass (FFM) and had been weight stable for at least 2 years. The RMR was significantly lower (p<0.05) in the LOW group compared to the values of the ADQ group (1.19 vs. 1.29 kcal·FFM-1·hr-l, respectively); this difference represents a lower resting expenditure of 158 kcal·day-1. No differences were found in TEM between the two groups. These results suggest that a lower RMR is one mechanism that contributes to weight maintenance in a group of low- versus adequate-energy intake male athletes.


Sign in / Sign up

Export Citation Format

Share Document