Studies on the Anatomy of Cimex lectularius L. II.

Parasitology ◽  
1924 ◽  
Vol 16 (3) ◽  
pp. 269-278 ◽  
Author(s):  
I. M. Puri

The stink organs are different in structure and position in the adult and the larval stages.The stink organs of the adult are composed of (a) a pair of glands, (b) a central reservoir with two backwardly-directed lateral reservoirs, (c) a median kidney-shaped organ in the central reservoir, and (d) a pair of lateral external openings.Each gland is a multicellular compound structure, opening into the central reservoir. It is described for the first time in this paper.The whole of the stink organ of the adult is formed in the last larval stage from a pair of invaginations of the epithelial lining of the body-wall.In the larval stages the stink organs are simple glands, situated dorsally in abdominal segments III to V.The function of the stink organs is defensive and in the adult perhaps also sexual.

Zoosymposia ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 44-70
Author(s):  
EMERIC GILLET ◽  
BERTRAND LEFEBVRE ◽  
VERONIQUE GARDIEN ◽  
EMILIE STEIMETZ ◽  
CHRISTOPHE DURLET ◽  
...  

Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of which have been controversial over almost two centuries. For the first time, a wide range of techniques (CT-scan, SEM, cathodoluminescence, XPL, UV epifluorescence, EBSD, FT-IR and XRF spectrometry) were applied to well-preserved specimens of Bolboporites from Norway and Russia. Our main finding confirms its echinoderm affinities, as shown by its stereomic microstructure and by the first definitive evidence of its monocrystalline nature. Each cone consists in a single, microporous calcitic crystal with a narrow longitudinal internal canal. These results are combined with all previous data on Bolboporites to critically discuss five alternative interpretations of this fossil, namely theca, basal cone, spine, columnal, and holdfast, respectively. The most parsimonious scenario considers Bolboporites as an isolated spine, which was articulated in life by a short biserial appendage to the body wall of an unknown echinoderm, possibly of echinozoan affinities.


2019 ◽  
Vol 11 (1) ◽  
pp. 106-111
Author(s):  
IGOR V CHIKHLYAEV ◽  
ALEXANDER B RUCHIN ◽  
ALEXANDER I FAYZULIN

Abstract. Chikhlyaev IV, Ruchin AB, Fayzulin AI. 2019. Short communication: An overview of the trematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) in the Volga Basin, Russia: 2. Larval stages. Nusantara Bioscience 11: 106-111. This paper presents data on the trematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) from 13 regions of the Volga Basin. It consolidates data from different authors over the past 30 years, supplemented by our own research results. There are authentically known findings of 10 trematodes species at the larval stage of development. The species Codonocephalus urniger (Rudolphi, 1819), mtc., Neodiplostomum spathoides Dubois, 1937, mtc. and Pharyngostomum cordatum (Diesing, 1850), mtc. have been observed for the first time in the given host on the territory of Russia and Volga basin. For each species of trematodes, there is the following information is included: taxonomic position, localization, area of detection, biology, definitive hosts, geographic distribution and degree of host-specificity.


Zootaxa ◽  
2019 ◽  
Vol 4577 (2) ◽  
pp. 295
Author(s):  
TIAN XU ◽  
CHAOSHU ZENG ◽  
KATE S. HUTSON

The complete larval and first crab stages of the decorator crab Camposcia retusa (Latreille, 1829) are described and illustrated based on laboratory-reared material for the first time. Specimens were obtained from larvae hatched from adult crabs collected from coral reefs of Queensland, Australia. Newly hatched larvae were successfully reared to settlement as the first-stage crabs. Larval development consisted of two zoeal stages and one megalopal stage. The morphology of each larval stage was compared with those available from a previous study using material from the Red Sea. Due to substantial differences in morphology of the second zoeal and megalopal stages between the two studies, we argue that these larval stages described by the earlier report may not be that of C. retusa. Finally, the morphological characters of both larval and first crab stages of C. retusa are also compared with the corresponding stages of previously reported Inachidae. 


1945 ◽  
Vol s2-85 (340) ◽  
pp. 343-389
Author(s):  
KARM NARAYAN BAHL

1. In an earthworm, as in most aquatic invertebrates, urea and ammonia form the main bulk of nitrogenous excretion and there is no trace of uric acid. These excretory products are first formed in the body-wall and gut-wall, pass therefrom into the coelomic fluid and blood, and are thence eliminated to the exterior by the nephridia. In Pheretima urea and ammonia pass out from the nephridia to the exterior either directly through the skin or through the two ends of the gut. 2. Ammonia and urea have been estimated for the first time in the blood, coelomic fluid, and urine of the earthworm. It has been shown that blood is not a mere carrier of oxygen, as Rogers believed, but that it also takes part in carrying urea and ammonia from the body-wall and gut-wall to the nephridia. The blood of the earthworm does not coagulate, indicating absence of fibrinogen. 3. The role of the nephridia in excretion and osmotic regulation has been determined. A comparison of the osmotic pressures of blood, coelomic fluid, and urine shows that the coelomic fluid is hypotonic to the blood, and that urine is markedly hypotonic both to the blood and coelomic fluid. The protein and chloride contents of the blood, coelomic fluid, and urine have been determined with a view to elucidate the differences in their osmotic pressures. It has been found that the urine contains the merest trace of protein, but that the amount of proteins in the blood is about eight times that contained in the plasma of the coelomic fluid. On the contrary, the chloride content of the coelomic fluid-plasma is about 60 per cent, higher than that of the blood-plasma. 4. The part of urine which is excreted from the blood is probably a protein-free filtrate, but the nephridia reabsorb all the proteins passing into them with the coelomic fluid-plasma. Similarly, there is a reabsorption of chlorides on a large scale from the initial nephridial filtrate during its passage through the nephridia. 5. A convenient method has been devised for collecting urine of the earthworm, which has made it possible to collect as much as 25 c.c. of urine in two and a half hours. The rate of excretion of the urine has been determined and it has been found that in an earthworm living in water the outflow of urine in twenty-four hours must be more than 45 per cent, of its body-weight. 6. It seems that an earthworm, when submerged in water, can live like a fresh water animal, and its gut acts as an osmoregulatory organ in addition to the nephridia, but in the soil it lives like a terrestrial animal and the osmo-regulatory function is adequately discharged by the nephridia alone which reabsorb chlorides and proteins, and are also active in the conservation of water. In Pheretima and other earthworms with an enteronephric type of nephridial system, the gut takes a prominent part in reabsorbing the water of the nephridial fluid and conserving water to its maximum extent. 7. The phagocytic section (ciliated middle tube) believed by Schneider to be absent in the nephridia of Pheretima has been shown to be distinctly present; it is also present in the nephridia of Lampito , Eutyphoeus, and Tonoscolex. The brownish yellow granules characteristic of this phagocytic section form a heavy deposit in the septal nephridia of Pheretima posthuma, heavier than that described in Lumbricus. The deposit increases with the age of the earthworm and forms a ‘storage excretory product’. 8. Spectroscopic examination has revealed that these brownish yellow granules, so far believed to be of guanine, are really blood-pigment granules, since a pyridine solution of them shows the two characteristic bands of haemochromogen. With regard to the blood-pigment, the nephridia function as ‘storage kidneys’. 9. The mechanism of nephridial excretion of the earthworm can be analysed into processes of filtration, reabsorption, and chemical transformation. 10. It is probable that the dorsal and ventral phagocytic organs of earthworms are additional excretory organs.


2010 ◽  
Vol 55 (2) ◽  
Author(s):  
Oleg Tolstenkov ◽  
Nadezhda Terenina ◽  
Elena Serbina ◽  
Margaretha Gustafsson

AbstractThe organisation of the neuromuscular system in cercariae, metacercariae and adult Opisthorchis felineus was studied. The patterns of nerves immunoreactive (IR) to antibodies towards serotonin (5-HT) and FMRFamide are described in relation to the musculature, stained with TRITC-conjugated phalloidin. The general organisation of the musculature in the body wall, suckers, pharynx, intestine and sphincter of the excretory pore remains the same from the larval stages to the adult worms. However, the diameter of the individual muscle fibres increases distinctly in the adult worms. The general pattern of 5-HT IR fibres in cercariae, metacercariae and adult O. felineus remains the same. Despite the large increase in body size, the number of 5-HT IR neurones remains almost the same in the cercariae and metacercariae and only a modest increase in number of neurones was observed in the adult worms. Thus the proportion of 5-HT IR neurones/body mass is greatest in the actively moving cercariae. Anti-FMRFamide stains the nervous system strongly.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 3921-3928 ◽  
Author(s):  
S. Gonzalez-Crespo ◽  
G. Morata

Arthropod appendages are thought to have evolved as outgrowths from the body wall of a limbless ancestor. Snodgrass, in his Principles of Insect Morphology (1935), proposed that, during evolution, expansion of the body wall would originate the base of the appendages, or coxopodite, upon which the most distal elements that represent the true outer limb, or telopodite, would develop. The homeobox gene Distal-less (Dll), which is required in the Drosophila appendages for development of distal regions, has been proposed to promote formation of telopodite structures above the evolutionary ground-state of non-limb or body wall. Here, we present evidence that another homeobox gene, extradenticle (exd), which is required for appropriate development of the trunk and the proximal parts of the appendages, represents a coxopodite gene. We show that exd function is eliminated from the distal precursors in the developing limb and remains restricted to proximal precursors throughout development. This elimination is important because, when ectopically expressed, exd prevents distal development and gives rise to truncated appendages lacking distal elements. Moreover, the maintenance of exd expression during larval stages, contrary to Dll, does not require the hedgehog (hh) signaling pathway, suggesting that the proximal regions of the appendages develop independently of hh function. Finally, we show that in the crustacean Artemia, exd and Dll are expressed in comparable patterns as in Drosophila, suggesting a conserved genetic mechanism subdividing the arthropod limb.


2015 ◽  
Vol 112 (14) ◽  
pp. 4195-4201 ◽  
Author(s):  
Shannon Stewart ◽  
Tong-Wey Koh ◽  
Arpan C. Ghosh ◽  
John R. Carlson

We examine in Drosophila a group of ∼35 ionotropic receptors (IRs), the IR20a clade, about which remarkably little is known. Of 28 genes analyzed, GAL4 drivers representing 11 showed expression in the larva. Eight drivers labeled neurons of the pharynx, a taste organ, and three labeled neurons of the body wall that may be chemosensory. Expression was not observed in neurons of one taste organ, the terminal organ, although these neurons express many drivers of the Gr (Gustatory receptor) family. For most drivers of the IR20a clade, we observed expression in a single pair of cells in the animal, with limited coexpression, and only a fraction of pharyngeal neurons are labeled. The organization of IR20a clade expression thus appears different from the organization of the Gr family or the Odor receptor (Or) family in the larva. A remarkable feature of the larval pharynx is that some of its organs are incorporated into the adult pharynx, and several drivers of this clade are expressed in the pharynx of both larvae and adults. Different IR drivers show different developmental dynamics across the larval stages, either increasing or decreasing. Among neurons expressing drivers in the pharynx, two projection patterns can be distinguished in the CNS. Neurons exhibiting these two kinds of projection patterns may activate different circuits, possibly signaling the presence of cues with different valence. Taken together, the simplest interpretation of our results is that the IR20a clade encodes a class of larval taste receptors.


1982 ◽  
Vol 60 (12) ◽  
pp. 3010-3020 ◽  
Author(s):  
T. H. J. Gilmour

The food-collecting and waste-rejecting systems of the tornaria larval stages of enteropneust hemichordates are similar to those of larval and adult lophophorates and adult pterobranch hemichordates. Water entering the oral grooves is deflected towards the mouth and the impetus of heavy, potentially inedible particles may take them across the flow lines of the water currents inferred from the movements of suspended particles to impinge on cilia which reject them into the outgoing water currents. Lighter, potentially edible material remaining suspended in the deflected water currents is intercepted by cilia on an oral hood which is similar in structure and function to the preoral lobe of the actinotroch larvae of phoronids. Excess water carried into the mouth by cilia on the dorsal surface of the esophagus is rejected via lateral grooves which develop into pouches prior to metamorphosis. Following metamorphosis the pouches make contact with the body wall to form gill slits which continue to allow water to escape from the pharynx. This finding that the function of allowing excess water to escape is performed by lateral grooves in the esophagus of tornariae supports previous speculations on the evolution of gill slits and provides further evidence for relationships between lophophorates, hemichordates, and chordates.


Zootaxa ◽  
2007 ◽  
Vol 1401 (1) ◽  
pp. 53 ◽  
Author(s):  
ROGER-DANIEL RANDRIANIAINA ◽  
FRANK GLAW ◽  
MEIKE THOMAS ◽  
JULIAN GLOS ◽  
NOROMALALA RAMINOSOA ◽  
...  

We describe the larval stages of two Malagasy frog species of the genus Gephyromantis, based on specimens identified by DNA barcoding. The tadpoles of Gephyromantis ambohitra are generalized stream-living Orton type IV type larvae with two lateral small constrictions of the body wall at the plane of spiracle. Gephyromantis pseudoasper tadpoles are characterized by totally keratinised jaw sheaths with hypertrophied indentation, a reduced number of labial tooth rows, enlarged papillae on the oral disc, and a yellowish coloration of the tip of the tail in life. The morphology of the tadpole of G. pseudoasper agrees with that of G. corvus, supporting the current placement of these two species in a subgenus Phylacomantis, and suggesting that the larvae of G. pseudoasper may also have carnivorous habits as known in G. corvus. Identifying the tadpole of Gephyromantis ambohitra challenges current assumptions of the evolution of different developmental modes in Gephyromantis, since this species is thought to be related to G. asper, a species of supposedly endotrophic direct development.


Parasitology ◽  
1992 ◽  
Vol 104 (1) ◽  
pp. 41-49 ◽  
Author(s):  
B. E. Daniel ◽  
T. M. Preston ◽  
V. R. Southgate

SUMMARYThe in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei was initiated by placing the miracidium in mammalian physiological saline. The transformation occurs in stages: the cilia cease beating; the ciliated plates become detached from the intercellular ridges and underlying muscle layers; the intercellular ridges spread over the body surface eventually forming a new tegument; the sporocyst changes from an ovoid to a tubular shape in about 48 h at room temperature. The surfaces of the miracidium, sporocyst and cercaria of S. margrebowiei display stage-specific carbohydrates on their surfaces as indicated by lectin staining. Ricin120 stains the cilia alone of the miracidium whereas peanut agglutinin stains the larval surface except for the cilia. The intercellular ridges of the miracidium stain with concanavalin A and wheat germ agglutinin, and these lectins stain the entire surface of the mature mother sporocyst. The cercaria is the only larval stage which stains positively with asparagus pea lectin. Bulinus nasutus is incompatible with Schistosoma margrebowiei; the haemolymph of this snail contains an agglutinin which agglutinates a wide variety of mammalian erythrocytes including those of human ABO blood groups. The haemagglutinin titre of B. nasutus plasma is reduced after incubation with miracidia of S. margrebowiei indicating that the agglutinin is absorbed onto the surface of this larval stage but not that of the mother sporocyst or cercaria. The possible roles of agglutinins in host–parasite interactions together with the significance of the differences in the surface carbohydrates of the larval stages are discussed.


Sign in / Sign up

Export Citation Format

Share Document