Life history and pathogenicity of Eimeria adenoeides Moore & Brown, 1951, in the turkey poult

Parasitology ◽  
1958 ◽  
Vol 48 (1-2) ◽  
pp. 70-88 ◽  
Author(s):  
M. J. Clarkson

The life cycle and pathogenicity of a strain of Eimeria isolated in Great Britain from turkey poults by single cell inoculation are described and, using the criteria laid down by Tyzzer, the species is identified as E. adenoeides.The life cycle is of the same general pattern as in other Eimeria species, consisting of two asexual and one sexual generations.The organism is highly pathogenic for young poults, a dose of 200,000 oocysts producing 100 % mortality in 3-week-old birds and smaller doses causing reduced weight gain. Birds 11 weeks old resisted a dose of 3 million oocysts.The gross and microscopic pathology of the infection is described. No changes were found in the blood picture.

Parasitology ◽  
1959 ◽  
Vol 49 (1-2) ◽  
pp. 70-82 ◽  
Author(s):  
M. J. Clarkson

The life cycle and pathogenicity are described of a pure strain of Eimeria isolated from turkey poults in Great Britain and identified as E. meleagrimitis.There were three schizogony cycles followed by a sexual generation.The coccidium produced a high mortality and loss of weight in young poults.An age resistance developed by the time the poults were 8–10 weeks of age.The pathology of the infection is described.


1929 ◽  
Vol 20 (1) ◽  
pp. 5-14 ◽  
Author(s):  
W. E. H. Hodson

The beetle, Lema melanopa, is a serious pest of cereal crops in certain areas of Europe and is becoming increasingly common on cereals in Britain. A survey of the literature indicates that the life-history differs in various localities, and no previous account has been given of the life-history in this country.The life-cycle in Britain is briefly as follows. The adult beetles emerge from hibernation in April, mate and commence to oviposit towards the end of May. Oviposition continues for nearly two months, and adults commence to emerge early in July and continue to do so until September. There is no indication that a second brood occurs, although the climate would permit of one.The adults feed freely after emergence, but largely on grasses, prior to hibernating in November. In the spring they feed almost exclusively on the leaves of young cereals. The larvae feed principally on cereals. Adults tend to be gregarious and are very long-lived, numbers living over a second winter.Two larval parasites occur in Britain and further information concerning these is being obtained. Of all larvae collected in the field 25 per cent. were found to be parasitised.The loss of crop sustained as a result of attack by this pest amounts on the Continent, in extreme cases, to as much as 50 per cent. of the total. Control measures consist of cultural methods, spraying and dusting. Certain of these might be adapted for use in this country with reasonable hope of success.


1961 ◽  
Vol 39 (5) ◽  
pp. 579-587 ◽  
Author(s):  
S. P. Gupta

Using the ferret as an experimental host, the life cycle of Molineus barbatus was shown to be direct. All stages are described. The third-stage larva infects the host orally or percutaneously and subsequent stages develop in the mucosa of the small intestine. The male matures earlier than the female and eggs are laid in 8 to 13 days after infection. The parasite is highly pathogenic to ferrets but apparently less so to skunks and racoons.


Parasitology ◽  
1941 ◽  
Vol 33 (3) ◽  
pp. 331-342 ◽  
Author(s):  
H. J. Craufurd-Benson

1. The geographical distribution of cattle lice in Britain is recorded in detail. Bovicola bovis is the commonest and most widely distributed species in Britain.2. The incubation period for the eggs was found to be: Haematopinus eurysternus, 9–19 days (av. 12); Bovicola bovis, 7–10 days (av. 8); Linognathus vitula, 10–13 days; Solenopotes capillatus, 10–13 days. With eggs of H. eurysternus it was found that the higher the minimum air temperature the shorter was the incubation period.3. In H. eurysternus the average length of the instars was: 1st, 4 days; 2nd, 4 days; 3rd, 4 days; pre-oviposition period, 3–4 days. The average time for the complete life cycle, egg to egg, was 28 days.4. The maximum longevity of H. eurysternus on the host was: males, 10 days; females, 16 days. No males or females of H. eurysternus survived a starvation period of 72 hr. at 20° C. and R.H. 70 or 0–10° C. and R.H. 70–85; but some nymphs survived this period at 20° C. and R.H. 70, but none survived 96 hr. starvation.5. The maximum number of eggs recorded for one female was 24; and eggs were laid at the rate of 1–4 a day.6. The threshold of development of the eggs of H. eurysternus appears to be about 27·5° C.


1968 ◽  
Vol 42 (3-4) ◽  
pp. 295-298 ◽  
Author(s):  
J. M. Hamilton ◽  
A. W. McCaw

Aelurostrongylus abstrusus, the lungworm of the cat, has a world wide distribution and has been reported from countries as far apart as America, Great Britain and Palestine. It has a complex life cycle insofar as a molluscan intermediate host is essential and it is possible that auxiliary hosts also play an important part. In Britain, the incidence of active infestation of cats with the parasite has been recorded as 19·4% (Lewis, 1927) and 6·6% (Hamilton, 1966) but the latter author found that, generally, the clinical disease produced by the parasite was of a mild nature. It is known that the average patent period of the infestation in the cat is 8–13 weeks and it seems likely that, in that time, a considerable number of first stage larvae would be evacuated. Information on that point is not available and the object of the following experiment was to ascertain the number of larvae produced by cats during the course of a typical infestation.


Parasitology ◽  
1967 ◽  
Vol 57 (1) ◽  
pp. 19-30 ◽  
Author(s):  
L. Madeline Angel

Echinoparyphium hydromyos sp.nov. with forty-five collar spines is described from the Australian water rat, Hydromys chrysogaster Geoffr.The cercaria occurs naturally in Plananisus isingi (Cotton & Godfrey), and all stages in the life-history have been demonstrated experimentally.Encystation occurs in the kidneys of tadpoles.The adult is most closely related to Echinoparyphium recurvatum (Linstow). It differs from this in its greater number of eggs and in its life-history. E. recurvatum occurs predominantly in birds, and is rarely found naturally in mammals. E. hydromyos has been found only in a mammal.Cercaria echinoparyphii hydromyos is compared with C. clelandae Johnston and Angel; it differs from the latter in the ‘compound’ nature of the excretory granules. The adult of C. clelandae has not been demonstrated in spite of a number of experiments to determine it.Type material has been deposited in the South Australian Museum.I wish to acknowledge the help given by my colleague, Patricia M. Thomas, in field work and in other ways, and by Mr Ian Smith, of this department, in the experimental work on life-history studies.


2001 ◽  
Vol 12 (3) ◽  
Author(s):  
Lauri Kaila ◽  
Bengt Bengtsson ◽  
Ivars Šulcs ◽  
Jari Junnilainen

The Elachista regificella complex (Elachistidae) is revised and considered to consist of three closely related species: E. regificella Sircom, presently only recorded from Great Britain, E. geminatella (Herrich-Schäffer), stat. rev. (= E. nieukerkeni Traugott-Olsen, syn. nov.) and E. tengstromi nom. nov. (= E. magnificella Tengström, 1848, nec Duponchel, 1843). The latter two species are widely distributed e.g. in Central Europe, the range of E. tengstromi extending to Japan. The species are diagnosed and illustrated. Life history records indicate that the species have, at least to some extent, different host plant preferences: Luzula sylvatica is recorded as the host plant of E. regificella and E. geminatella, of which the latter probably exploits other host plants as well. L. pilosa is the only known host plant of E. tengstromi in Europe, with further host plants recorded in Japan. Neotypes are designated for Elachista regificella Sircom and Poeciloptilia geminatella Herrich-Schäffer.


Author(s):  
J. B. Brown-Gilpin

The wide variety of reproductive patterns and behaviour in the many species of Nereidae already studied clearly justifies further research. But the life history of Nereis fucata (Savigny) is not only of interest from the comparative point of view. Its commensal habit (it occurs within shells occupied by hermit crabs) immediately gives it a special importance. This alone warrants a detailed study, particularly as no commensal polychaete has yet been reared through to metamorphosis and settlement on its host (Davenport, 1955; Davenport & Hickok, 1957). The numerous interesting problems which arise, and the experimental methods needed to study them, are, however, beyond the range of a paper on nereid development. It is therefore proposed to confine the present account to the reproduction and development up to the time when the larvae settle on the bottom. The complete life cycle, the mechanism of host-adoption, and related topics, will be reported in later papers.


1953 ◽  
Vol 31 (4) ◽  
pp. 351-373 ◽  
Author(s):  
Liang-Yu Wu

A cause of swimmer's itch in the lower Ottawa River is Trichobilharzia cameroni sp. nov. Its life cycle has been completed experimentally in laboratory-bred snails and in canaries and ducks, and the various stages are described. The eggs are spindle-shaped. The sporocysts are colorless and tubular. Mother sporocysts become mature in about a week. The younger daughter sporocyst is provided with spines on the anterior end and becomes mature in about three weeks. The development in the snail requires from 28 to 35 days. A few cercariae were found to live for up to 14 days at 50 °C., although their life at 16° to 18 °C. was about four days. Cercariae kept at room temperature for 60 to 72 hr. were found infective. The adults become mature in canaries and pass eggs in about 12 to 14 days. Physa gyrina is the species of snail naturally infected. It was found in one case giving off cercariae for five months after being kept in the laboratory. Domestic ducks were found to become infected until they were at least four months old, with the parasites developing to maturity in due course; no experiments were made with older ducks. Furthermore, miracidia were still recovered from the faeces four months after the duck had been experimentally infected, and it is suggested that migratory birds are the source of the local infection.


1938 ◽  
Vol s2-80 (319) ◽  
pp. 459-478
Author(s):  
CATHERINE HAYES

1. A large free-living amoeba found by Mr. Harry Watkinson in the tropical fish tanks of Mr. Albert Sutcliffe of Grimsby has been identified as Amoeba discoides (Schaeffer, 1916) = Metachaos discoides (Schaeffer, 1926). 2. From the inoculation material obtained from these tanks Amoeba discoides has been successfully cultivated in the Notre Dame Training College Laboratory by a technique similar to that used for the cultivation of Amoeba proteus: wheat being the pabulum employed. In contrast to what obtains in the cultivation of Amoeba proteus , however, Amoeba discoides flourishes more luxuriantly in shallow Petri dishes, than in deeper troughs. 3. The nucleus in the resting and dividing stages is described; division is amitotic. 4. The more important cytoplasmic contents, including nutritive spheres, and crystals are likewise described. 5. The life-history has been worked out. The adult amoeba becomes an agamont giving rise to agametes which eventually grow into adult amoebae, the life-cycle occupying roughly about four months. 6. Descriptions of the nucleus of the newly hatched and developing amoebae are deferred. I wish to offer my sincerest thanks to Professor Graham Kerr under whom this work was begun, and who has continued from afar to watch over it with ever kindly interest and encouragement and who has read the paper in typescript. My thanks are also extended to Professor Hindle, under whom the work was completed, for his kind advice and for reading the paper in typescript. In conclusion I would like to express my appreciation of her skill and of the care and trouble bestowed by Miss Brown Kelly in the execution of the original drawing of fig. 1, PI. 31.


Sign in / Sign up

Export Citation Format

Share Document