A note on the defence reactions of insects to Protozoa

Parasitology ◽  
1969 ◽  
Vol 59 (4) ◽  
pp. 753-756 ◽  
Author(s):  
George Salt

It is well known that the defence reactions of insects to metazoan parasites are principally cellular rather than humoral; and it has recently been shown that the habitual parasitoids of an insect have means of resisting or avoiding the defence reactions of their host (Salt, 1968). Those two findings suffest that it may be necessary to re-examine the situation with regard to protozoan parasites, including some genera for which insects act as vectors between vertebrate hosts. Two examples will serve to draw attention to the problems involved.

Parasitology ◽  
2016 ◽  
Vol 143 (13) ◽  
pp. 1683-1690 ◽  
Author(s):  
JUAN C. GARCIA-R ◽  
DAVID T. S. HAYMAN

SUMMARYProtozoan parasites of the genus Cryptosporidium infect all vertebrate groups and display some host specificity in their infections. It is therefore possible to assume that Cryptosporidium parasites evolved intimately aside with vertebrate lineages. Here we propose a scenario of Cryptosporidium–Vertebrata coevolution testing the hypothesis that the origin of Cryptosporidium parasites follows that of the origin of modern vertebrates. We use calibrated molecular clocks and cophylogeny analyses to provide and compare age estimates and patterns of association between these clades. Our study provides strong support for the evolution of parasitism of Cryptosporidium with the rise of the vertebrates about 600 million years ago (Mya). Interestingly, periods of increased diversification in Cryptosporidium coincides with diversification of crown mammalian and avian orders after the Cretaceous-Palaeogene (K-Pg) boundary, suggesting that adaptive radiation to new mammalian and avian hosts triggered the diversification of this parasite lineage. Despite evidence for ongoing host shifts we also found significant correlation between protozoan parasites and vertebrate hosts trees in the cophylogenetic analysis. These results help us to understand the underlying macroevolutionary mechanisms driving evolution in Cryptosporidium and may have important implications for the ecology, dynamics and epidemiology of cryptosporidiosis disease in humans and other animals.


Author(s):  
Katherine García-Livia ◽  
Ángela Fernández-Álvarez ◽  
Carlos Feliu ◽  
Jordi Miquel ◽  
Yann Quilichini ◽  
...  

AbstractCryptosporidium spp. are worldwide protozoan parasites that can affect to a broad range of vertebrate hosts, including rodents. In the island of Corsica (France), there are no previous data about these protozoa infecting wild rodents. To estimate the distribution and occurrence, a total of 117 wild murine rodents of the species Rattus rattus (84), Mus musculus domesticus (21), Apodemus sylvaticus (11), and Rattus norvegicus (1) were captured in 24 different biotopes. Fecal samples were screened for Cryptosporidium spp. by nested PCR to amplify an 830 bp fragment of the 18S rRNA gene. As general occurrence, 15.4% of the rodents analyzed were positive for Cryptosporidium spp., being detected widely distributed along the island in R. rattus (17.6%) and M. m. domesticus (14.3%). Cryptosporidium viatorum, Cryptosporidium sp. rat genotype II, and Cryptosporidium sp. rat genotype III were successfully identified in R. rattus. The results herein reported provide the first data on Cryptosporidium spp. in wild murine species from a Mediterranean island and constitute the first report of the zoonotic species C. viatorum in R. rattus. Although a low occurrence of Cryptosporidium spp. in murids was obtained and only in one animal the zoonotic species C. viatorum was identified, our results highlight that wild murine rodents from Corsica could mediate in the maintenance and transmission of this protozoan to the environment and other hosts including humans and animals. Further studies are required to better understand the epidemiology of Cryptosporidium spp. in wild rodents from Corsica and their possible public health repercussions.


2012 ◽  
Vol 57 (4) ◽  
Author(s):  
João Maia ◽  
Elena Gómez-Díaz ◽  
D. Harris

AbstractMicroscopy has traditionally been the most common method in parasitological studies, but in recent years molecular screening has become increasingly frequent to detect protozoan parasites in a wide range of vertebrate hosts and vectors. During routine molecular screening of apicomplexan parasites in reptiles using the 18S rRNA gene, we have amplified and sequenced Proteromonas parasites from three lizard hosts (less than 1% prevalence). We conducted phylogenetic analysis to confirm the taxonomic position and infer their relationships with other stramenopiles. Although our phylogeny is limited due to scarcity of molecular data on these protists, our results confirm they are closely related to Proteromonas lacertae. Our findings show that unexpected parasites can be amplified from host samples (blood and tissue) using general procedures to detect hemoparasites, and stress that positive PCR amplifications alone should not be considered as definitive proof of infection by particular parasites. Further validation by sequence confirmation and thorough phylogenetic assessment will not only avoid false positives and biased prevalence estimates but also provide valuable information on the biodiversity and phylogenetic relationships of other parasitic organisms. More generally, our results illustrate the perils of general diagnosis protocols in parasitological studies and the need of cross-validation procedures.


Parasitology ◽  
2015 ◽  
Vol 143 (1) ◽  
pp. 114-122 ◽  
Author(s):  
ROBERT POULIN ◽  
ANNE A. BESSON ◽  
MATHIEU B. MORIN ◽  
HASEEB S. RANDHAWA

SUMMARYHost-parasite checklists are essential resources in ecological parasitology, and are regularly used as sources of data in comparative studies of parasite species richness across host species, or of host specificity among parasite species. However, checklists are only useful datasets if they are relatively complete, that is, close to capturing all host–parasite associations occurring in a particular region. Here, we use three approaches to assess the completeness of 25 checklists of metazoan parasites in vertebrate hosts from various geographic regions. First, treating checklists as interaction networks between a set of parasite species and a set of host species, we identify networks with a greater connectance (proportion of realized host–parasite associations) than expected for their size. Second, assuming that the cumulative rise over time in the number of known host–parasite associations in a region tends toward an asymptote as their discovery progresses, we attempt to extrapolate the estimated total number of existing associations. Third, we test for a positive correlation between the number of published reports mentioning an association and the time since its first record, which is expected because observing and reporting host–parasite associations are frequency-dependent processes. Overall, no checklist fared well in all three tests, and only three of 25 passed two of the tests. These results suggest that most checklists, despite being useful syntheses of regional host–parasite associations, cannot be used as reliable sources of data for comparative analyses.


Author(s):  
Winaruddin W ◽  
Eliawardani E

The aimed of this research is inventoried the parasites of carp in floating cage net at Laut TawarLake. This study used 100 fishes consisted of 50 fries and 50 reproductive stadia. The result of thisresearch indicates the parasites found in the fishes are Trichodina sp., Ichtyophthirius multifiliis,Dactylogyrus sp., Gyrodactylus sp., Epistylis sp. and Lernaea sp. Protozoan parasites were found in allfishes and infected fish organs, while metazoan parasites infected fins and gills and copepods only infectedskin.Keywords: parasites, carps, floating cage net, Laut Tawar Lake


2021 ◽  
Vol 40 (1) ◽  
Author(s):  
Shigeharu Sato

AbstractMalaria is one of the most devastating infectious diseases of humans. It is problematic clinically and economically as it prevails in poorer countries and regions, strongly hindering socioeconomic development. The causative agents of malaria are unicellular protozoan parasites belonging to the genus Plasmodium. These parasites infect not only humans but also other vertebrates, from reptiles and birds to mammals. To date, over 200 species of Plasmodium have been formally described, and each species infects a certain range of hosts. Plasmodium species that naturally infect humans and cause malaria in large areas of the world are limited to five—P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. The first four are specific for humans, while P. knowlesi is naturally maintained in macaque monkeys and causes zoonotic malaria widely in South East Asia. Transmission of Plasmodium species between vertebrate hosts depends on an insect vector, which is usually the mosquito. The vector is not just a carrier but the definitive host, where sexual reproduction of Plasmodium species occurs, and the parasite’s development in the insect is essential for transmission to the next vertebrate host. The range of insect species that can support the critical development of Plasmodium depends on the individual parasite species, but all five Plasmodium species causing malaria in humans are transmitted exclusively by anopheline mosquitoes. Plasmodium species have remarkable genetic flexibility which lets them adapt to alterations in the environment, giving them the potential to quickly develop resistance to therapeutics such as antimalarials and to change host specificity. In this article, selected topics involving the Plasmodium species that cause malaria in humans are reviewed.


Parasitology ◽  
1963 ◽  
Vol 53 (3-4) ◽  
pp. 527-642 ◽  
Author(s):  
George Salt

1. Defence reactions to metazoan parasites have been reported in fourteen orders of insects. The observations are brought together and reviewed in the first part of the paper.2. Examination of the various accounts that have been given shows that blood cells are always involved in insect defence reactions. They act by forming a cellular capsule, from which a connective-tissue envelope is usually developed, and in which melanin is often deposited.3. The reaction of the epidermal cells at perforations made by parasites is of the nature of wound-healing, and plays no part in defence against metazoan parasites after they have entered the body.4. Although several other tissues have been implicated, there is insufficient evidence to show that any of them make defence reactions, their response being limited to processes of regeneration.5. It is concluded that the blood cells of insects are their only known agents of defence to internal metazoan parasites.6. The principal groups of metazoan parasites infesting insects are considered in the third part of the paper, in order to see how the defence reactions made to them are related to their mode of attack and to the nature and consequences of their parasitism.7. Most parasites elicit a defence reaction when they are in unusual hosts.8. Some parasites, at certain stages of their life-history, are able to avoid eliciting a defence reaction in their usual hosts.9. Some parasites elicit a defence reaction in their usual hosts but are able either to endure it in a dormant state or to resist it.10. General problems of host specificity in relation to defence reactions are discussed. It is concluded that analysis of the stimuli that produce defence reactions has not yet gone far enough to explain the phenomena.11. The effects of insect defence reactions on metazoan parasites range from no perceptible effect to destruction of the parasite.12. The defence reactions of insects are influenced by the species, genetic strain, stage, instar, size, health and physiological state of the host; and by the species, genetic strain, physical and physiological activity, and health of the parasite. Environmental temperature and the presence of other parasites of the same or different species also have effects on the reactions.13. A brief survey of defence reactions made by invertebrates other than insects shows that encapsulation has been reported in Annelida, Mollusca, Crustacea, Acarina, and larval echinoderms. So far as it goes, the survey does not reveal in these other groups any reaction to metazoan parasites of a kind radically different from the reactions observed in insects.14. The historical development and present state of our knowledge of insect defence reactions is traced.15. The reactions made by insects to innocuous parasites are of theoretical interest but of little consequence to the species concerned. It is their effect on potentially dangerous parasites that determines the value of defence reactions. Consideration of the evidence suggests that the protection afforded to insects by their defence reactions is greater than has been generally supposed.16. The review makes apparent many gaps in our knowledge of the phenomena. A few of the outstanding problems are mentioned.I am indebted to Mr R. T. Hughes of the Balfour Library for helping me to obtain journals not available in Cambridge; to Mr M. J. Ashby for the photography necessary in the preparation of the figures; and to Miss G. M. Edwards for her careful typing from my manuscript. The paper would not have been completed without the goodwill and assistance of two persons: Professor D. Keilin, F.R.S., encouraged me to continue and finish it when my effort flagged; my wife not only gave me positive help in many ways but also exercised great forbearance in allowing me to devote vacations and spare time to it.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Geo Semini ◽  
Daniel Paape ◽  
Martin Blume ◽  
M. Fleur Sernee ◽  
Diego Peres-Alonso ◽  
...  

ABSTRACT Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid β-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the β-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR’s role in β-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that β-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies. IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania. The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.


Sign in / Sign up

Export Citation Format

Share Document