Observations on the nephridial system of the cestode Moniezia expansa (Rud., 1805)

Parasitology ◽  
1969 ◽  
Vol 59 (2) ◽  
pp. 449-459 ◽  
Author(s):  
R. E. Howells

The nephridial system of M. expansa has been studied using light and electron microscopy, and a number of histochemical techniques have been used on sections of the worm. The organization of the nephridial system and the fine structure of the flame cells and the nephridial ducts are described. Pores, which connect the nephridial lumen to the intercellular space of the connective tissue, exist at the junction of a flame cell and a nephridial duct. These pores may be considered nephrostomes and the system therefore is not protonephridial as defined by Hyman (1951).The epithelium lining the nephridial ducts has a structure which suggests that it is metabolically active. It is postulated that the beating of the cilia of the flame cells draws fluid into the ducts via the nephrostomes, with absorption and/or secretion of solutes being carried out by the epithelial cells of the duct walls. The function of the nephridial system is discussed.I am grateful to Professor James Brough for the provision of research facilities at the Department of Zoology, University College, Cardiff, andtoDrD. A. Erasmus for much helpful advice during the course of the work. I wish to thank Professors W. Peters and T. Wilson for critically reading the manuscript and Miss M. Williams and Mr T. Davies for expert technical assistance.I also wish to thank the Veterinary Inspector and his staff at the Roath Abattoir, Cardiff, for their kind co-operation and assistance in obtaining material.The work was carried out under the tenure of an S.R.C. research scholarship.

1972 ◽  
Vol 25 (3) ◽  
pp. 469 ◽  
Author(s):  
JG Swift ◽  
TP O'brien

The cytological changes that take place in the scutellar epithelium and parenchyma during the first 5 days of germination are described by light and electron microscopy. Within 6 hr small starch grains appear in the plastids of both cell types and the size and number of starch grains increase gradually as germination proceeds. Later in germination starch disappears again from the plastids in the epithelial cells, but large starch grains still remain in the parenchyma cells. The reserves of the protein bodies are hydrolysed and the residual vacuoles undergo extensive coales-cence. Modifications in the appearance of the wall material of the epithelial cells as these cells elongate are illustrated and possible functional bases for these changes are suggested. The cells of the scutellar epithelium show no cytological evidence for their known functions of diastase secretion and nutrient absorption.


2002 ◽  
Vol 11 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Shahida Shahana ◽  
Caroline Kampf ◽  
Godfried M. Roomans

Background: Allergic asthma is associated with an increased number of eosinophils in the airway wall. Eosinophils secrete cationic proteins, particularly major basic protein (MBP).Aim: To investigate the effect of synthetic cationic polypeptides such as poly-L-arginine, which can mimic the effect of MBP, on airway epithelial cells.Methods: Cultured airway epithelial cells were exposed to poly-L-arginine, and effects were determined by light and electron microscopy.Results: Poly-L-arginine induced apoptosis and necrosis. Transmission electron microscopy showed mitochondrial damage and changes in the nucleus. The tight junctions were damaged, as evidenced by penetration of lanthanum. Scanning electron microscopy showed a damaged cell membrane with many pores. Microanalysis showed a significant decrease in the cellular content of magnesium, phosphorus, sodium, potassium and chlorine, and an increase in calcium. Plakoglobin immunoreactivity in the cell membrane was decreased, indicating a decrease in the number of desmosomes.Conclusions: The results point to poly-L-arginine induced membrane damage, resulting in increased permeability, loss of cell-cell contacts and generalized cell damage.


1983 ◽  
Vol 217 (1207) ◽  
pp. 191-213 ◽  

Purkinje strands from both ventricles of adult mongrel dogs were excised, and electrical properties were studied by the voltage-clamp technique. The strands were then examined with light and electron microscopy and structural properties were analysed by morphometric techniques. The canine Purkinje strand contains (by volume) about 28% myocyte and 55% dense outer connective tissue. The remainder of the volume is taken up by the inner shell of loosely packed connective tissue within 10 μm of a myocyte membrane. These volume fractions vary considerably from one strand to another. Clefts less than 10 μm wide occupy 18% of the myocyte volume and clefts less than 1 μm wide occupy 1%. The membrane surface area of the myocytes can be divided into three categories by reference to the size of the adjacent cleft. About 47.8% of the membrane surface area faces clefts wider than 1 μm, another 22.2% faces clefts between 0.1 and 1 μm wide, and the final 30% faces clefts less than 0.1 μm wide. The surface area facing the narrowest clefts (less than 0.1 μm wide) is divided between nexuses 3%, desmosomes 10%, and unspecialized membrane 17% (each figure is expressed as a percentage of the total surface area of myocyte membrane). The canine Purkinje strand has a more favourable anatomy than the sheep Purkinje strand for most physiological experiments. We expect that the complicating effects of series resistance and change in the concentration of extracellular ions will be much smaller than in sheep strands, but still not negligible.


1974 ◽  
Vol 31 (2) ◽  
pp. 147-153 ◽  
Author(s):  
M. D. B. Burt ◽  
I. M. Sandeman

Light and electron microscopy were used to describe the functional morphology of Bothrimonus sturionis in detail. In particular, the musculature, nervous system, osmoregulatory system, and tegument are dealt with, and the findings compared with those of other workers. The musculature of the scolex consists of several interrelated systems, the structure of each being discussed in relation to its function. Associated with the regular nervous system, considered typical of cestodes, is an extensive system of giant nerve fibers. The osmoregulatory system is unusual in that there are lateral "excretory" pores in many proglottides which open directly to the exterior of the worm. The microtriches of the tegument are long, like those of other primitive cestodes, and are covered by a noncellular sheath while the worm is in its gammarid host. The sheath is lost when the worm becomes established in its fish host; the nature and function of the sheath are discussed.


1967 ◽  
Vol 2 (3) ◽  
pp. 349-358
Author(s):  
R. M. EAKIN ◽  
JANE A. WESTFALL ◽  
M. J. DENNIS

The eye of a nudibranch, Hermissenda crassicornis, was studied by light and electron microscopy. Three kinds of cells were observed: large sensory cells, each bearing at one end an array of microvilli (rhabdomere) and at the other end an axon which leaves the eye by the optic nerve; large pigmented supporting cells; and small epithelial cells, mostly corneal. There are five sensory cells, and the same number of nerve fibres in the optic nerve. The receptor cells contain an abundance of small vesicles, 600-800 Å in diameter. The lens is a spheroidal mass of osmiophilic, finely granular material. A basal lamina and a capsule of connective tissue enclose the eye. In some animals the eye is ‘infected’ with very small bodies, 4-5 µ in diameter, thought to be symbionts.


2014 ◽  
Vol 59 (2) ◽  
pp. 232-236 ◽  
Author(s):  
Muhammad A. Altaf ◽  
Thomas Ciecierega ◽  
Sara Szabo ◽  
Adrian Miranda ◽  
Christina Gorges ◽  
...  

1974 ◽  
Vol 22 (3) ◽  
pp. 263 ◽  
Author(s):  
DE Hollis ◽  
AG Lyne

The innervation of the mystacial vibrissa follicles in the adult brush-tailed possum, T. vulpecula, has been studied by light and electron microscopy. One to five large nerve trunks penetrate the lower part of the follicle capsule and divide many times as they ascend and completely envelop the con- nective tissue sheath of the follicle. As many as 500 myelinated nerves have been observed in the mid region of the largest follicles. Above the mid region, most of the nerves move closer to the centre of the follicle and finally terminate within or near the outer layer of epithelial cells. Four main types of nerve endings have been observed: (1) Sensory receptor cells, called Merkel cells, with their associated neurites are numerous within the outer layer of epithelial cells. (2) Palisade endings, which are less common than the Merkel cell-neurite complexes, surround the upper part of the glassy membrane of the follicle. In transverse section each palisade ending appears as a flattened central neurite partially enveloped on either side by Schwann cell processes. (3) Bulbous endings occur in both the connective tissue sheath and in the outer layer of follicle epithelial cells. They are larger than types (1) and (2) and their ultrastructure varies markedly. (4) Compound endings occur within the connective tissue sheath of the follicle. They are uncommon but large and are composed of a chain of bulbous units joined by nerves; the entire ending may be encapsulated. Within each unit there is a tangle of nerve fibres. The Merkel cell-neurite complexes and the palisade endings in T. vulpecula are remarkably similar to those of eutherian mammals, suggesting that such sensory structures were features of primitive mammals.


1997 ◽  
Vol 75 (3) ◽  
pp. 444-458 ◽  
Author(s):  
B. D. Sun ◽  
J. M. Schmidt

The structure of the antennal heart of Aedes aegypti (L.) (Diptera: Culicidae) was observed using light and electron microscopy. The antennal heart consists of several distinct regions including a single layer of columnar cells, the chamber walls, the valve, the z-body, the muscle fibres, and the connective tissue filaments. The columnar cells are structurally similar to secretory and osmoregulatory cells. Features of tendinous epidermal cells typically involved in the attachment of muscles to the cuticle can be observed in various areas of the antennal heart when it is examined as a whole. A model describing the pumping mechanism of the antennal heart in A. aegypti is presented.


1988 ◽  
Vol 36 (7) ◽  
pp. 717-727 ◽  
Author(s):  
S J Hagen ◽  
J S Trier

We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.


Author(s):  
D. L. Taylor

The intertidal actinian Anemonia sulcata is known to harbour yellow-brown algal symbionts which are similar in appearance to the zooxanthellae of hermatypic, or reef-building, corals and a number of other invertebrate species. The cytochemistry and structural morphology of the zooxanthella has been studied by light and electron microscopy, to help define it taxonomically and to reveal something about its relations with the actinian. These investigations confirm that it is a dinoflagellate and have revealed several structural adaptations which are formed as a result of the peculiar mode of life adopted by this alga. Of significance is the fine structure of the periplast, which may have a considerable bearing upon the type of relationship which can exist between the host and its symbiont. These findings are discussed in terms of other known instances of algal-invertebrate symbiosis.


Sign in / Sign up

Export Citation Format

Share Document