Recognition and invasion of human skin by Schistosoma mansoni cercariae: the key-role of L-arginine

Parasitology ◽  
2002 ◽  
Vol 124 (2) ◽  
pp. 153-167 ◽  
Author(s):  
W. HAAS ◽  
K. GRABE ◽  
C. GEIS ◽  
T. PÄCH ◽  
K. STOLL ◽  
...  

The attachment of Schistosoma mansoni cercariae to mammalian skin is specifically stimulated by L-arginine. As L-arginine is an unsuitable signal for a specific identification of mammalian skin we examined the following 5 hypotheses to explain the advantage of the cercarial sensitivity to L-arginine. (1) A Schistosoma infection lowered the arginine concentration in the serum of mice, and this could enable the cercariae to avoid attachments to already infected mice. However, the infection did not reduce the arginine concentration in the skin and the cercarial attachment responses to it. (2) Creeping cercariae showed chemotactic orientation specifically along increasing L-arginine gradients. L-arginine could act as a pheromone which could guide cercariae towards common penetration sites. However, the cercarial acetabular gland contents were not attractive and they did not (in contrast to previous reports) contain much arginine. (3) Schistosomula (transformed cercariae) could use L-arginine to produce nitric oxide (NO) for blood vessel dilation during their migration in the host. However, in vitro the transformed cercariae did not convert L-arginine into citrulline and NO. (4) Schistosomula could bind L-arginine from the surrounding tissues and so escape the cellular immune attack (which needs L-arginine as the precursor of NO). However, transformed cercariae bound no more L-arginine than L-serine and L-lysine. (5) Schistosomula, migrating parallel to the surface in the mammalian epidermis, are dependent on information on their position between the inner and the surface layers of the skin. In the mouse skin, they adjusted their body axis with the ventral side toward the deeper (arginine-residue rich) epidermis layers. When migrating in agar, they showed chemo-orientation toward serum, and D-glucose and L-arginine were the stimulating compounds therein. The burrowing schistosomula adjusted their body axis (as in the epidermis) with the ventral side toward the higher concentration of L-arginine and not of glucose. We argue that the sensitivity for L-arginine has its primary function in orientation within mammalian skin and in location of blood vessels.

2021 ◽  
Vol 14 (7) ◽  
pp. 686
Author(s):  
Raquel Porto ◽  
Ana C. Mengarda ◽  
Rayssa A. Cajas ◽  
Maria C. Salvadori ◽  
Fernanda S. Teixeira ◽  
...  

The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, a disease of great global public health significance. Praziquantel is the only drug available to treat schistosomiasis and there is an urgent demand for new anthelmintic agents. Adopting a phenotypic drug screening strategy, here, we evaluated the antiparasitic properties of 46 commercially available cardiovascular drugs against S. mansoni. From these screenings, we found that amiodarone, telmisartan, propafenone, methyldopa, and doxazosin affected the viability of schistosomes in vitro, with effective concentrations of 50% (EC50) and 90% (EC90) values ranging from 8 to 50 µM. These results were further supported by scanning electron microscopy analysis. Subsequently, the most effective drug (amiodarone) was further tested in a murine model of schistosomiasis for both early and chronic S. mansoni infections using a single oral dose of 400 mg/kg or 100 mg/kg daily for five consecutive days. Amiodarone had a low efficacy in chronic infection, with the worm and egg burden reduction ranging from 10 to 30%. In contrast, amiodarone caused a significant reduction in worm and egg burden in early infection (>50%). Comparatively, treatment with amiodarone is more effective in early infection than praziquantel, demonstrating the potential role of this cardiovascular drug as an antischistosomal agent.


Parasitology ◽  
1978 ◽  
Vol 77 (2) ◽  
pp. 225-233 ◽  
Author(s):  
C. A. P. Tavares ◽  
Rita C. Soares ◽  
P. M. Z. Coelho ◽  
G. Gazzinelli

SummaryArtificially transformed schistosomula of Schistosoma mansoni develop a consistent but small protection against the lethal effects of antibody plus complement when cultured for 24 h in a chemically defined medium. In contrast, they become rapidly resistant to antibody plus complement, when cultured in the presence of a complex medium consisting of equal parts of heat-inactivated rabbit serum and Earle's/lactalbumin or in defined medium supplemented with small amounts of heat-inactivated rabbit serum. Sephadex G-200 gel filtration revealed that the protective factor in rabbit serum is a macromolecule with a molecular weight between 7 and 19S. Parasites cultured at 10 °C or in the presence of 200 μg of puromycin show less serum-induced protection against the lethal effects of antibody plus complement than do controls.


1999 ◽  
Vol 67 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Jeffrey Kopacz ◽  
Nirbhay Kumar

ABSTRACT γδ T cells accumulate during Plasmodium infections in both murine and human malarias. The biological role of these cells and the antigens that they recognize are not clearly understood, although recent findings indicate that γδ T cells in general influence both innate and antigen-specific adaptive host responses. We examined the accumulation of γδ T cells elicited during infection with virulent and avirulent Plasmodium yoelii parasites in relatively susceptible and resistant strains of mice. Our results indicated that in nonlethal malaria infections, γδ T cells comprise a larger proportion of splenic T cells than in lethal infections and that only a live infection is capable of inducing an increase in the percentage of γδ T cells in vivo. Furthermore, we demonstrate that γδ T cells elicited during a P. yoelii infection respond by proliferation in vitro to P. falciparum heat shock proteins (HSPs) of 60 and 70 kDa, suggesting a possible immunological involvement of parasite HSPs in this arm of the cellular immune response during malarial infection in mice.


1999 ◽  
Vol 67 (4) ◽  
pp. 1887-1893 ◽  
Author(s):  
Imtiaz A. Khan ◽  
Magali Moretto

ABSTRACT Microsporidia are obligate intracellular protozoan parasites that cause a wide variety of opportunistic infection in patients with AIDS. Because it is able to grow in vitro, Encephalitozoon cuniculi is currently the best-studied microsporidian. T cells mediate protective immunity against this parasite. Splenocytes obtained from infected mice proliferate in vitro in response to irradiated parasites. A transient state of hyporesponsiveness to parasite antigen and mitogen was observed at day 17 postinfection. This downregulatory response could be partially reversed by addition of nitric oxide (NO) antagonist to the culture. Mice infected withE. cuniculi secrete significant levels of gamma interferon (IFN-γ). Treatment with antibody to IFN-γ or interleukin-2 (IL-12) was able to neutralize the resistance to the parasite. Mutant animals lacking the IFN-γ or IL-12 gene were highly susceptible to infection. However, mice unable to secrete NO withstood high doses of parasite challenge, similar to normal wild-type animals. These studies describe an IFN-γ-mediated protection against E. cuniculi infection that is independent of NO production.


1998 ◽  
Vol 47 ◽  
pp. 155
Author(s):  
W Haas ◽  
K Stoll ◽  
C Geis ◽  
B Haberl ◽  
M Fuchs ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Izzah Bungsu ◽  
Nurolaini Kifli ◽  
Siti Rohaiza Ahmad ◽  
Hazim Ghani ◽  
Anne Catherine Cunningham

The prevalence of chronic inflammatory diseases including inflammatory bowel disease (IBD), autoimmunity and cancer have increased in recent years. Herbal-based compounds such as flavonoids have been demonstrated to contribute to the modulation of these diseases although understanding their mechanism of action remains limited. Flavonoids are able to interact with cellular immune components in a distinct way and influence immune responses at a molecular level. In this mini review, we highlight recent progress in our understanding of the modulation of immune responses by the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor whose activity can be regulated by diverse molecules including flavonoids. We focus on the role of AhR in integrating signals from flavonoids to modulate inflammatory responses using in vitro and experimental animal models. We also summarize the limitations of these studies. Medicinal herbs have been widely used to treat inflammatory disorders and may offer a valuable therapeutic strategy to treat aberrant inflammatory responses by modulation of the AhR pathway.


1985 ◽  
Vol 75 (4) ◽  
pp. 1297-1307 ◽  
Author(s):  
J W Kazura ◽  
P de Brito ◽  
J Rabbege ◽  
M Aikawa
Keyword(s):  

2009 ◽  
Vol 206 (4) ◽  
pp. 909-921 ◽  
Author(s):  
Hayley Crawford ◽  
Wendy Lumm ◽  
Alasdair Leslie ◽  
Malinda Schaefer ◽  
Debrah Boeras ◽  
...  

HLA-B*57 is the class I allele most consistently associated with control of human immunodeficiency virus (HIV) replication, which may be linked to the specific HIV peptides that this allele presents to cytotoxic T lymphocytes (CTLs), and the resulting efficacy of these cellular immune responses. In two HIV C clade–infected populations in South Africa and Zambia, we sought to elucidate the role of HLA-B*5703 in HIV disease outcome. HLA-B*5703–restricted CTL responses select for escape mutations in three Gag p24 epitopes, in a predictable order. We show that the accumulation of these mutations sequentially reduces viral replicative capacity in vitro. Despite this, in vivo data demonstrate that there is ultimately an increase in viral load concomitant with evasion of all three HLA-B*5703–restricted CTL responses. In HLA-B*5703–mismatched recipients, the previously described early benefit of transmitted HLA-B*5703–associated escape mutations is abrogated by the increase in viral load coincident with reversion. Rapid disease progression is observed in HLA-matched recipients to whom mutated virus is transmitted. These data demonstrate that, although costly escape from CTL responses can progressively attenuate the virus, high viral loads develop in the absence of adequate, continued CTL responses. These data underline the need for a CTL vaccine against multiple conserved epitopes.


1991 ◽  
Vol 174 (6) ◽  
pp. 1399-1406 ◽  
Author(s):  
M F Horta ◽  
F J Ramalho-Pinto ◽  
M Fatima

Decay-accelerating factor (DAF) is a 70-kD membrane glycoprotein that prevents complement (C)-mediated hemolysis by blocking the assembly or accelerating the decay of C3 convertase. Purified DAF is known to incorporate into the membrane of DAF-deficient cells, inhibiting lysis. Since Schistosoma mansoni is a blood-dwelling parasite, we investigated whether DAF can be transferred from human erythrocytes to the worm and protect it against C-mediated killing in vitro. We have found that schistosomula (schla) incubated with normal human erythrocytes (N-HuE), but not with DAF-deficient erythrocytes, become resistant to C damage in vitro. Protected parasites acquire a 70-kD surface protein which can be immunoprecipitated by anti-DAF antibodies. The acquired resistance is abrogated by treatment of N-HuE-incubated parasites with anti-DAF antibody. These results indicate that, in vitro, N-HuE DAF can be transferred to schla, and suggest its participation in preventing their C-mediated killing. This could represent an important strategy of parasites to evade the host's immune response in vivo.


Sign in / Sign up

Export Citation Format

Share Document