scholarly journals Herbal Plants: The Role of AhR in Mediating Immunomodulation

2021 ◽  
Vol 12 ◽  
Author(s):  
Izzah Bungsu ◽  
Nurolaini Kifli ◽  
Siti Rohaiza Ahmad ◽  
Hazim Ghani ◽  
Anne Catherine Cunningham

The prevalence of chronic inflammatory diseases including inflammatory bowel disease (IBD), autoimmunity and cancer have increased in recent years. Herbal-based compounds such as flavonoids have been demonstrated to contribute to the modulation of these diseases although understanding their mechanism of action remains limited. Flavonoids are able to interact with cellular immune components in a distinct way and influence immune responses at a molecular level. In this mini review, we highlight recent progress in our understanding of the modulation of immune responses by the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor whose activity can be regulated by diverse molecules including flavonoids. We focus on the role of AhR in integrating signals from flavonoids to modulate inflammatory responses using in vitro and experimental animal models. We also summarize the limitations of these studies. Medicinal herbs have been widely used to treat inflammatory disorders and may offer a valuable therapeutic strategy to treat aberrant inflammatory responses by modulation of the AhR pathway.

2021 ◽  
Vol 28 ◽  
Author(s):  
Jacopo Troisi ◽  
Giorgia Venutolo ◽  
Concetta Terracciano ◽  
Matteo Delli Carri ◽  
Simone Di Micco ◽  
...  

Background: The involvement of intercellular tight junctions and, in particular, the modulation of their competency by the zonulin pathway with a subsequent increase in epithelial and endothelial permeability, has been described in several chronic and acute inflammatory diseases. In this scenario, Larazotide, a zonulin antagonist, could be employed as a viable therapeutic strategy. Objective: The present review aims to describe recent research and current observations about zonulin involvement in several diseases and the use of its inhibitor Larazotide for their treatment. Methods: A systematic search was conducted on PubMed and Google Scholar, resulting in 209 publications obtained with the following search query: “Larazotide,” “Larazotide acetate,” “AT-1001,” “FZI/0” and “INN-202.” After careful examination, some publications were removed from consideration because they were either not in English or were not directly related to Larazotide. Results: The obtained publications were subdivided according to Larazotide’s mechanism of action and different diseases: celiac disease, type 1 diabetes, other autoimmune diseases, inflammatory bowel disease, Kawasaki disease, respiratory (infective and/or non-infective) diseases, and other. Conclusions: A substantial role of zonulin in many chronic and acute inflammatory diseases has been demonstrated in both in vivo and in vitro, indicating the possible efficacy of a Larazotide treatment. Moreover, new possible molecular targets for this molecule have also been demonstrated.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Se Eun Byeon ◽  
Young-Su Yi ◽  
Jueun Oh ◽  
Byong Chul Yoo ◽  
Sungyoul Hong ◽  
...  

Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2017 ◽  
Vol 77 (4) ◽  
pp. 523-532 ◽  
Author(s):  
Sophie Glatt ◽  
Dominique Baeten ◽  
Terry Baker ◽  
Meryn Griffiths ◽  
Lucian Ionescu ◽  
...  

ObjectiveInterleukin (IL)-17A has emerged as pivotal in driving tissue pathology in immune-mediated inflammatory diseases. The role of IL-17F, sharing 50% sequence homology and overlapping biological function, remains less clear. We hypothesised that IL-17F, together with IL-17A, contributes to chronic tissue inflammation, and that dual neutralisation may lead to more profound suppression of inflammation than inhibition of IL-17A alone.MethodsPreclinical experiments assessed the role of IL-17A and IL-17F in tissue inflammation using disease-relevant human cells. A placebo-controlled proof-of-concept (PoC) clinical trial randomised patients with psoriatic arthritis (PsA) to bimekizumab (n=39) or placebo (n=14). Safety, pharmacokinetics and clinical efficacy of multiple doses (weeks 0, 3, 6 (240 mg/160 mg/160 mg; 80 mg/40 mg/40 mg; 160 mg/80 mg/80 mg and 560 mg/320 mg/320 mg)) of bimekizumab, a humanised monoclonal IgG1 antibody neutralising both IL-17A and IL-17F, were investigated.ResultsIL-17F induced qualitatively similar inflammatory responses to IL-17A in skin and joint cells. Neutralisation of IL-17A and IL-17F with bimekizumab more effectively suppressed in vitro cytokine responses and neutrophil chemotaxis than inhibition of IL-17A or IL-17F alone. The PoC trial met both prespecified efficacy success criteria and showed rapid, profound responses in both joint and skin (pooled top three doses vs placebo at week 8: American College of Rheumatology 20% response criteria 80.0% vs 16.7% (posterior probability >99%); Psoriasis Area and Severity Index 100% response criteria 86.7% vs 0%), sustained to week 20, without unexpected safety signals.ConclusionsThese data support IL-17F as a key driver of human chronic tissue inflammation and the rationale for dual neutralisation of IL-17A and IL-17F in PsA and related conditions.Trial registration numberNCT02141763; Results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaofang Wang ◽  
Panpan Yi ◽  
Yuejin Liang

IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kangfeng Jiang ◽  
Weiqi Ye ◽  
Qian Bai ◽  
Jinyin Cai ◽  
Haichong Wu ◽  
...  

Staphylococcus aureus (S. aureus), a notorious pathogenic bacterium prevalent in the environment, causes a wide range of inflammatory diseases such as endometritis. Endometritis is an inflammatory disease in humans and mammals, which prolongs uterine involution and causes great economic losses. MiR-30a plays an importan trole in the process of inflammation; however, the regulatory role of miR-30a in endometritis is still unknown. Here, we first noticed that there was an increased level of miR-30a in uterine samples of cows with endometritis. And then, bovine endometrial epithelial (BEND) cells stimulated with the virulence factor lipoteichoic acid (LTA) from S. aureus were used as an in vitro endometritis model to explore the potential role of miR-30a in the pathogenesis of endometritis. Our data showed that the induction of the miR-30a expression is dependent on NF-κB activation, and its overexpression significantly decreased the levels of IL-1β and IL-6. Furthermore, we observed that the overexpression of miR-30a inhibited its translation by binding to 3 ′ − UTR of MyD88 mRNA, thus preventing the activation of Nox2 and NF-κB and ROS accumulation. Meanwhile, in vivo studies further revealed that upregulation of miR-30a using chemically synthesized agomirs alleviates the inflammatory conditions in an experimental mouse model of endometritis, as indicated by inhibition of ROS and NF-κB. Taken together, these findings highlight that miR-30a can attenuate LTA-elicited oxidative stress and inflammatory responses through the MyD88/Nox2/ROS/NF-κB pathway and may aid the future development of novel therapies for inflammatory diseases caused by S. aureus, including endometritis.


2019 ◽  
Vol 16 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Hamid Farhang ◽  
Laleh Sharifi ◽  
Mohammad Mehdi Soltan Dallal ◽  
Mona Moshiri ◽  
Zahra Norouzbabaie ◽  
...  

Background: The non-steroidal anti-inflammatory drugs (NSAIDs) play crucial role in the controlling of inflammatory diseases. Due to the vast side effects of NSAIDs, its use is limited. G2013 or &amp;#945;-L-Guluronic Acid is a new NSAID with immunomodulatory features. Objectives: Considering the leading role of TLRs in inflammatory responses, in this study, we aimed to evaluate G2013 cytotoxicity and its effect on the expression of TLR2 and TLR4 molecules. Methods: HEK293-TLR2 and HEK293-TLR4 cells were cultured and seeded on 96-well cell plate, and MTT assay was performed for detecting the viability of the cells after treatment with different concentrations of G2013. HT29 cells were grown and treated with low and high doses of G2013. After total RNA extraction and cDNA synthesis, quantitative real-time PCR were performed to assess the TLR2 and TLR4 mRNA synthesis. Results: We found that concentrations of ≤125 &amp;#181;g/ml of G2013 had no apparent cytotoxicity effect on the HEK293-TLR2 and -TLR4 cells. Our results indicated that after G2013 treatment (5 &amp;#181;g/ml) in HT29 cells, TLR2 and TLR4 mRNA expression decreased significantly compared with the untreated control group (p=0.02 and p=0.001 respectively). Conclusion: The results of this study revealed that G2013 can down regulate the TLR2 and TLR4 gene expression and exerts its inhibitory effect. Our findings are parallel to our previous finding which showed G2013 ability to down regulate the signaling pathway of TLRs. However, further studies are needed to identify the molecular mechanism of G2013.<p&gt;


2021 ◽  
Vol 9 (4) ◽  
pp. 697
Author(s):  
Valerio Baldelli ◽  
Franco Scaldaferri ◽  
Lorenza Putignani ◽  
Federica Del Chierico

Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Tang ◽  
Mengchun Zhou ◽  
Rongrong Huang ◽  
Ling Shen ◽  
Li Yang ◽  
...  

Abstract Background Astrocytes participate in innate inflammatory responses within the mammalian central nervous system (CNS). HECT domain E3 ubiquitin protein ligase 1 (HECTD1) functions during microglial activation, suggesting a connection with neuroinflammation. However, the potential role of HECTD1 in astrocytes remains largely unknown. Results Here, we demonstrated that HECTD1 was upregulated in primary mouse astrocytes after 100 ng/ml lipopolysaccharide (LPS) treatment. Genetic knockdown of HECTD1 in vitro or astrocyte-specific knockdown of HECTD1 in vivo suppressed LPS-induced astrocyte activation, whereas overexpression of HECTD1 in vitro facilitated LPS-induced astrocyte activation. Mechanistically, we established that LPS activated σ-1R-JNK/p38 pathway, and σ-1R antagonist BD1047, JNK inhibitor SP600125, or p38 inhibitor SB203580 reversed LPS-induced expression of HECTD1, thus restored LPS-induced astrocyte activation. In addition, FOXJ2 functioned as a transcription factor of HECTD1, and pretreatment of primary mouse astrocytes with BD1047, SB203580, and SP600125 significantly inhibited LPS-mediated translocation of FOXJ2 into the nucleus. Conclusions Overall, our present findings suggest that HECTD1 participates in LPS-induced astrocyte activation by activation of σ-1R-JNK/p38-FOXJ2 pathway and provide a potential therapeutic strategy for neuroinflammation induced by LPS or any other neuroinflammatory disorders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


Sign in / Sign up

Export Citation Format

Share Document