Climate change and the epidemiology of protostrongylid nematodes in northern ecosystems:Parelaphostrongylus odocoileiandProtostrongylus stilesiin Dall's sheep (Ovis d. dalli)

Parasitology ◽  
2005 ◽  
Vol 132 (3) ◽  
pp. 387-401 ◽  
Author(s):  
E. J. JENKINS ◽  
A. M. VEITCH ◽  
S. J. KUTZ ◽  
E. P. HOBERG ◽  
L. POLLEY

We describe the epidemiology of the protostrongylid parasitesParelaphostrongylus odocoileiandProtostrongylus stilesiin Dall's sheep (Ovis dalli dalli) from the Mackenzie Mountains, Northwest Territories, Canada (65 °N; 128 °W). Peak numbers of 1st-stage larvae of both parasites were shed by Dall's sheep on their winter range from March until May. In larval development experiments in the Mackenzie Mountains, peak numbers of infective 3rd-stage larvae ofP. odocoileiwere available in gastropod intermediate hosts in August–September. For both protostrongylids, the majority of transmission likely occurs on the winter range, with infection of gastropods when they emerge from hibernation in spring, and infection of Dall's sheep upon their return in fall. We validated a degree-day model for temperature-dependent development of larvalP. odocoileiin gastropods, and applied degree-day models to describe and predict spatial and temporal patterns in development ofP. odocoileiandP. stilesiin northern North America. Temperature-dependent larval development may currently limit northward range expansion ofP. odocoileiinto naïve populations of Dall's sheep in the Arctic, but climate warming may soon eliminate such constraints. In Subarctic regions where bothP. odocoileiandP. stilesiare endemic, the length of the parasite ‘growing season’ (when temperatures were above the threshold for larval development) and amount of warming available for parasite development has increased over the last 50 years. Further climate warming and extension of the seasonal window for transmission may lead to amplification of parasite populations and disease outbreaks in host populations.

2019 ◽  
Vol 15 (6) ◽  
pp. 20190275 ◽  
Author(s):  
Jessica L. Waite ◽  
Eunho Suh ◽  
Penelope A. Lynch ◽  
Matthew B. Thomas

The rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature-dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago. Here, we show that the established degree-day model greatly underestimates the rate of development of P. falciparum in both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17–20°C. We also show that realistic daily temperature fluctuation further speeds parasite development. These novel results challenge one of the longest standing models in malaria biology and have potentially important implications for understanding the impacts of future climate change.


2019 ◽  
Author(s):  
Jessica L. Waite ◽  
Eunho Suh ◽  
Penelope A. Lynch ◽  
Matthew B. Thomas

AbstractThe rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago. Here, we show that the established degree-day model greatly underestimates the rate of development of P. falciparum in both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17-20°C. We also show that realistic daily temperature fluctuation further speeds parasite development. These novel results challenge one of the longest standing models in malaria biology and have potentially important implications for understanding the impacts of climate change.


2002 ◽  
Vol 80 (11) ◽  
pp. 1977-1985 ◽  
Author(s):  
Susan J Kutz ◽  
Eric P Hoberg ◽  
John Nishi ◽  
Lydden Polley

Development of the muskox protostrongylid lungworm, Umingmakstrongylus pallikuukensis, in its slug intermediate host, Deroceras laeve, was investigated under field conditions in the Arctic. Every 2 weeks, from 19 June to 28 August 1997, groups of 10 experimentally infected slugs were placed in tundra enclosures in a mesic sedge meadow near Kugluktuk, Nunavut, Canada. First-stage larvae (L1) infecting slugs on or before 17 July developed to third-stage larvae (L3) in 4–6 weeks. Intensity of L3 in slugs peaked at 6–8 weeks post infection (PI) and then progressively declined by 10, 12, and 48–50 weeks PI. Abundance of L3 in slugs was greatest during mid to late August. L1 infecting slugs on 31 July or later did not develop to L3 before the end of September but overwintered in slugs on the tundra as L1 or as second-stage larvae, completing development to L3 the following summer. The years 1997 and 1998 were exceptionally warm and, in cooler years, rates of larval development may be slower and patterns of availability may differ. The amount of heating (degree-days) accumulated during each trial was calculated using the 8.5°C threshold determined in the laboratory, a 21°C maximum, and either surface, soil, or air temperature. Only degree-days accumulated at the surface were sufficient to correspond to the observed rates of larval development. This enclosure-based system and associated degree-day calculations may be used for predicting the effects of climate and climate change on patterns of parasite development and transmission in the Arctic.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


1976 ◽  
Vol 54 (12) ◽  
pp. 2055-2060 ◽  
Author(s):  
A. K. M. Bashirullah ◽  
Benazir Ahmed

The larval development of Camallanus adamsi Bashirullah, 1974 was followed in intermediate hosts, Mesocyclops leuckarti (Claus) and Thermocyclops crassus (Fischer), which were kept at 24 °C and 27 °C (average). The nematode molted twice in the haemocoel of copepods. The first molt occurred 117 h after infection at 24 °C and the second molt after 249 h. At 27 °C, the first and the second molts occurred 72 and 168 h respectively after the infection. Three larval stages are described.


2009 ◽  
Vol 21 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Wojciech Majewski ◽  
Andrzej Tatur

AbstractCribroelphidium webbi sp. nov. is the only adequately described sub-Recent elphidiid foraminifer from Antarctica. In Admiralty Bay (King George Island, South Shetland Islands), it is found at several locations within inner fiord setting at water depths between 33 and 165 m, but most commonly shallower than 100 m. In outer basins this foraminifer is absent. In the cores analysed, C. webbi sp. nov. is present in well-constrained sub-Recent horizons that are clearly related to climate warming and deglaciation. These horizons represent a diachronous facies marker rather than a single stratigraphic layer. Cribroelphidium webbi sp. nov. shows clear association with retreating tidewater glaciers, therefore it is an important sensitive glacier-proximal indicator. It appears that it shares similar ecologic affinities with Cribroelphidium excavatum clavatum, which is widely distributed throughout the Arctic.


1984 ◽  
Vol 48 (1) ◽  
pp. 156 ◽  
Author(s):  
N. M. Simmons ◽  
M. B. Bayer ◽  
L. O. Sinkey

Parasitology ◽  
2008 ◽  
Vol 136 (2) ◽  
pp. 253-265 ◽  
Author(s):  
J. HUGHES ◽  
S. D. ALBON ◽  
R. J. IRVINE ◽  
S. WOODIN

SUMMARYMacroparasites potentially play a significant but often ignored role in the ecology and dynamics of wild ruminant populations. In the Arctic, parasites may impact on host populations by exacerbating the effects of seasonal and limited forage availability on the condition, fecundity and survival of individuals. We studied the effects of abomasal nematode parasites and warble flies, Hypoderma tarandi, on condition and pregnancy of caribou Rangifer tarandus in the Dolphin-Union herd, Nunavut, Canada. By the end of winter, female caribou over 2 years old showed a significant decrease in body weight with increasing nematode burden, and a decrease in back fat depth with increasing warble abundance. These effects were exaggerated in the non-pregnant fraction of the population. High warble larvae burdens were also associated with significantly reduced probability of being pregnant. Our research demonstrates a negative relationship between parasites and caribou condition that may have consequences for their fitness. Additionally, we discuss the possibility that muskox Ovibos moschatus share some parasite species with the caribou and could lead to elevated burdens in the sympatric host. Parasites may have been a contributory factor in a previous winter range-shift of the caribou herd and this may reflect a form of apparent competition between the two ungulate species.


2015 ◽  
Vol 35 ◽  
pp. 9 ◽  
Author(s):  
Andrey Sikorski ◽  
Lyudmila Pavlova

<p>The species <em>Scolelepis finmarchicus</em> sp. nov. is described from the Norwegian and Barents Seas along the northern Norwegian coast and Kola peninsula. The occurrence of this species in the Kola Bay could be seen as a sign of climate warming in the area. Taxonomic issues existing in the genus <em>Scolelepis</em> within the area along the Norwegian coast and in the Barents Sea are briefly touched upon. Seven species belonging to <em>Scolelepis</em> have recently been recorded from the Atlantic sector of the Arctic. <em>Scolelepis</em> (<em>S</em>.) <em>matsugae</em> Sikorski, 1994 is newly synonymized with <em>S</em>. (<em>S</em>.) <em>laonicola</em> (Tzetlin, 1985). This article provides a brief review of <em>Scolelepis</em> together with an identification key for the genus from the Atlantic sector of the Arctic</p>


2004 ◽  
Vol 12 (1) ◽  
pp. 1-70 ◽  
Author(s):  
S Perin ◽  
D RS Lean

Depletion of stratospheric ozone, the principal atmospheric attenuator of ultraviolet-B (UVB) radiation, by man-made chemicals has raised scientific and public concern regarding the biological effects of increased UVB radiation on Earth. There is an increased awareness that existing levels of solar UV radiation have an important influence on biological and chemical processes in aquatic ecosystems. For aquatic organisms, numerous studies have shown direct detrimental effects of UVB radiation at each trophic level. Fortunately, many aquatic organisms also possess a range of photoprotective mechanisms against UV radiation toxicity. In addition to its direct impact, harmful effects of UVB radiation at a single-trophic level can cascade through the food web and indirectly affect organisms from other trophic levels. Because UV radiation photochemically reacts with humic substances and other photosensitive agents in the water, increases in solar UVB can also indirectly affect aquatic organisms through the production and (or) release of different photoproducts like biologically available nutrients and harmful reactive oxygen species. Polar aquatic ecosystems have been of particular concern, since stratospheric ozone-related UVB increases have been the greatest in these regions. With the influences of climate warming and the possibility of future volcanic eruptions, ozone losses are expected to get worse in the Arctic stratosphere, and the ozone layer recovery may not follow the slow decline of industrial ozone-depleting compounds in the atmosphere. Climate warming is also expected to bring important changes in underwater ultraviolet radiation (UVR) penetration in Arctic freshwaters that would be more significant to the aquatic biota than stratospheric ozone depletion.Key words: Arctic, UV radiation, UVB, ozone depletion, climate change, aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document