scholarly journals Evolution of parasitism along convergent lines: from ecology to genomics

Parasitology ◽  
2013 ◽  
Vol 142 (S1) ◽  
pp. S6-S15 ◽  
Author(s):  
ROBERT POULIN ◽  
HASEEB S. RANDHAWA

SUMMARYFrom hundreds of independent transitions from a free-living existence to a parasitic mode of life, separate parasite lineages have converged over evolutionary time to share traits and exploit their hosts in similar ways. Here, we first summarize the evidence that, at a phenotypic level, eukaryotic parasite lineages have all converged toward only six general parasitic strategies: parasitoid, parasitic castrator, directly transmitted parasite, trophically transmitted parasite, vector-transmitted parasite or micropredator. We argue that these strategies represent adaptive peaks, with the similarities among unrelated taxa within any strategy extending to all basic aspects of host exploitation and transmission among hosts and transcending phylogenetic boundaries. Then, we extend our examination of convergent patterns by looking at the evolution of parasite genomes. Despite the limited taxonomic coverage of sequenced parasite genomes currently available, we find some evidence of parallel evolution among unrelated parasite taxa with respect to genome reduction or compaction, and gene losses or gains. Matching such changes in parasite genomes with the broad phenotypic traits that define the convergence of parasites toward only six strategies of host exploitation is not possible at present. Nevertheless, as more parasite genomes become available, we may be able to detect clear trends in the evolution of parasitic genome architectures representing true convergent adaptive peaks, the genomic equivalents of the phenotypic strategies used by all parasites.

Paleobiology ◽  
1988 ◽  
Vol 14 (3) ◽  
pp. 272-286 ◽  
Author(s):  
Takashi Okamoto

Nipponites, a Late Cretaceous nostoceratid ammonite, shows a peculiar meandering shell growth in the middle-late stage. Assuming neutral buoyancy, and a constant aperture angle relative to the sea bottom, meandering growth of this ammonite was modeled by computer simulation. In this model, the meandering shell growth is controlled by regulation of life orientation. The remarkable similarity in the coiling modes and rib obliquity patterns between the computer-simulated and actual specimens strongly suggests a free living mode of life in Nipponites with an approximately neutral buoyancy. The simulation also suggests that morphological saltation from a simple helicoid form like Eubostrychoceras japonicum to a meandering shell form like Nipponites occurred abruptly without any intermediate form by minor change of the upper and lower limits of growth direction.


Author(s):  
Rahul B. Gaikwad ◽  
Hemant K. Bhagwan ◽  
Sayed Zarin Sana ◽  
Shakera A Inamdar

Parasitic biochemistry is an arena which is emerging in parallel with the new surge of interest in tropical diseases. The previously known parasitologists have been known to adopt biochemical methodology in order to stay up-to-date of development. The main source of energy for cestode inhabiting the alimentary tract of vertebrates is glucose. Proteins and lipids are also crucial and play many important biological roles. The protein content of the parasites adapted to parasitic mode of life typically constitute 20 to 40 percent of their dry weight, while as older proglottids are known to contain higher contents of lipid. The present study deals with biochemical estimation of cestode parasites and its host (Normal and infected intestinal tissue of Mastacembelus armatus) from Nasik district. The result show higher concentration of lipid in parasites than its host.


Author(s):  
Zoltán Elek ◽  
Miklós Bán ◽  
Attila Fülöp ◽  
Attila Marton ◽  
Márk E. Hauber ◽  
...  

AbstractThe brood parasitic Common Cuckoo Cuculus canorus is best known for its two-note “cu-coo” call which is almost continuously uttered by male during the breeding season and can be heard across long distances in the field. Although the informative value of the cuckoo call was intensively investigated recently, it is still not clear whether call characteristic(s) indicate any of the phenotypic traits of the respective vocalising individuals. To fill this gap, we studied whether the call rate of male cuckoos (i.e., the number of calls uttered per unit of time) provides information on their body size, which might be a relevant trait during intrasexual territorial conflicts. We captured free-living male cuckoos and measured their body size parameters (mass, wing, tail and tarsus lengths). Each subject was then radio-tagged, released, and its individual “cu-coo” calls were recorded soon after that in the field. The results showed that none of the body size parameters covaried statistically with the call rates of individual male Common Cuckoos. In addition, we experimentally tested whether the “cu-coo” call rates affect behavioural responses of cuckoos using playbacks of either a quicker or a slower paced call than the calls with natural rates. Cuckoos responded similarly to both types of experimental playback treatments by approaching the speaker with statistically similar levels of responses as when presented with calls at the natural rate. We conclude that male Common Cuckoos do not advertise reliable information acoustically regarding their body size, and so, cuckoo calls are neither useful to characterize cuckoos’ phenotypic traits directly nor to indicate environmental quality indirectly.


2021 ◽  
Author(s):  
Xiaoyuan Feng ◽  
Xiao Chu ◽  
Yang Qian ◽  
Michael W. Henson ◽  
V. Celeste Lanclos ◽  
...  

SummaryMembers of the marine Roseobacter group are key players in the global carbon and sulfur cycles. While over 300 species have been described, only 2% possess reduced genomes (mostly 3-3.5 Mbp) compared to an average roseobacter (>4 Mbp). These taxonomic minorities are phylogenetically diverse but form a Pelagic Roseobacter Cluster (PRC) at the genome content level. Here, we cultivated eight isolates constituting a novel Roseobacter lineage which we named ‘CHUG’. Metagenomic and metatranscriptomic read recruitment analyses showed that CHUG members were globally distributed and active in marine environments. CHUG members possess some of the smallest genomes (~2.52 Mb) among all known roseobacters, but they do not exhibit canonical features of genome streamlining like higher coding density or fewer paralogues and pseudogenes compared to their sister lineages. While CHUG members are clustered with traditional PRC members at the genome content level, they show important differences. Unlike other PRC members, neither the relative abundances of CHUG members nor their gene expression levels are correlated with chlorophyll a concentration across the global samples. Moreover, CHUG members cannot synthesize vitamin B12, a key metabolite made by most roseobacters but not by many phytoplankton species and thus thought to mediate the roseobacter-phytoplankton interactions. This combination of features is evidence for the hypothesis that CHUG members may have evolved a free-living lifestyle decoupled from phytoplankton. This ecological transition was accompanied by the loss of signature genes involved in roseobacter-phytoplankton symbiosis, suggesting that relaxation of purifying selection is likely an important driver of genome reduction in CHUG.


2010 ◽  
Vol 365 (1541) ◽  
pp. 847-855 ◽  
Author(s):  
William Martin

Many genes in eukaryotes are acquisitions from the free-living antecedents of chloroplasts and mitochondria. But there is no evolutionary ‘homing device’ that automatically directs the protein product of a transferred gene back to the organelle of its provenance. Instead, the products of genes acquired from endosymbionts can explore all targeting possibilities within the cell. They often replace pre-existing host genes, or even whole pathways. But the transfer of an enzymatic pathway from one compartment to another poses severe problems: over evolutionary time, the enzymes of the pathway acquire their targeting signals for the new compartment individually, not in unison. Until the whole pathway is established in the new compartment, newly routed individual enzymes are useless, and their genes will be lost through mutation. Here it is suggested that pathways attain novel compartmentation variants via a ‘minor mistargeting’ mechanism. If protein targeting in eukaryotic cells possesses enough imperfection such that small amounts of entire pathways continuously enter novel compartments, selectable units of biochemical function would exist in new compartments, and the genes could become selected. Dual-targeting of proteins is indeed very common within eukaryotic cells, suggesting that targeting variation required for this minor mistargeting mechanism to operate exists in nature.


2013 ◽  
Vol 110 (46) ◽  
pp. 18590-18595 ◽  
Author(s):  
V. Boscaro ◽  
M. Felletti ◽  
C. Vannini ◽  
M. S. Ackerman ◽  
P. S. G. Chain ◽  
...  

2007 ◽  
Vol 17 (2) ◽  
pp. 582-597 ◽  
Author(s):  
ERIC P. PALKOVACS ◽  
KIRSTIN B. DION ◽  
DAVID M. POST ◽  
ADALGISA CACCONE

2021 ◽  
Author(s):  
Wei Huang ◽  
Kara L Dicks ◽  
Keith T Ballingall ◽  
Susan E Johnston ◽  
Alexandra M Sparks ◽  
...  

AbstractPathogen-mediated selection (PMS) is thought to maintain the high level of allelic diversity observed in the major histocompatibility complex (MHC) class II genes. A comprehensive way to demonstrate contemporary selection is to examine associations between MHC variation and individual fitness. As individual fitness is hard to measure, many studies examine associations between MHC diversity and phenotypic traits which include direct or indirect measures of adaptive immunity thought to contribute to fitness. Here, we tested associations between MHC class II variation and five representative phenotypic traits measured in August: weight, strongyle faecal egg count, and plasma IgA, IgE and IgG immunoglobulin titres against the gastrointestinal nematode parasite Teladorsagia circumcincta in a free-living population of Soay sheep. We found no association between MHC class II variation and August weight or strongyle faecal egg count. We did however find associations between MHC class II variation and immunoglobulin levels which varied with age, isotype and sex. Our results suggest associations between MHC and phenotypic traits are more likely to be found for traits more closely associated with pathogen defence than integrative traits such as body weight and highlight a useful role of MHC-antibody associations in examining selection on MHC genes.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1291 ◽  
Author(s):  
Anna K. Simonsen ◽  
Shery Han ◽  
Phil Rekret ◽  
Christine S. Rentschler ◽  
Katy D. Heath ◽  
...  

Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly though changes in the soil chemistry or indirectly through altered host legume feedbacks, and is potentially a strong selective agent acting on natural rhizobia populations.


Sign in / Sign up

Export Citation Format

Share Document