On the interpretation of age–prevalence curves for trypanosome infections of tsetse flies

Parasitology ◽  
1998 ◽  
Vol 116 (2) ◽  
pp. 149-156 ◽  
Author(s):  
M. E. J. WOOLHOUSE ◽  
J. W. HARGROVE

Epidemiological models are used to analyse 8 published data sets reporting age–prevalence curves for trypanosome infections of the tsetse fly Glossina pallidipes. A model assuming a fixed maturation period and a rate of infection which is independent of fly age is adequate for Trypanosoma vivax-type infections, explaining 98% of observed variance in prevalence by site and age, allowing that the rate of infection may be site dependent. This model is not adequate for T. congolense-type infections and the fit can be improved by allowing (i) the rates of infection to decline with age (although non-teneral flies remain susceptible), (ii) a fraction of resistant flies, which may vary between sites, (iii) increased mortality of infected flies and (iv) variation in the maturation period. Models with these features can explain up to 97% of observed variance. Parameter estimates from published experimental data suggest that all may contribute in practice but that (i) and/or (ii) are likely to be the most important.

Author(s):  
Imna I. Malele ◽  
Johnson O. Ouma ◽  
Hamisi S. Nyingilili ◽  
Winston A. Kitwika ◽  
Deusdedit J. Malulu ◽  
...  

This study was conducted to determine the efficiency of different tsetse traps in 28 sites across Tanzania. The traps used were biconical, H, NGU, NZI, pyramidal, S3, mobile, and sticky panels. Stationary traps were deployed at a distance of 200 m apart and examined 72 h after deployment. The results showed that 117 (52.2%) out of the 224 traps deployed captured at least one Glossina species. A total of five Glossina species were captured, namely Glossina brevipalpis, Glossina pallidipes, Glossina swynnertoni, Glossina morsitans, and Glossina fuscipes martinii. Biconical traps caught tsetse flies in 27 sites, pyramidal in 26, sticky panel in 20, mobile in 19, S3 in 15, NGU in 7, H in 2 and NZI in 1. A total of 21 107 tsetse flies were trapped, with the most abundant species being G. swynnertoni (55.9%), followed by G. pallidipes (31.1%), G. fuscipes martinii (6.9%) and G. morsitans (6.0%). The least caught was G. brevipalpis (0.2%). The highest number of flies were caught by NGU traps (32.5%), followed by sticky panel (16%), mobile (15.4%), pyramidal (13.0%), biconical (11.3%) and S3 (10.2%). NZI traps managed to catch 0.9% of the total flies and H traps 0.7%. From this study, it can be concluded that the most efficient trap was NGU, followed by sticky panel and mobile, in that order. Therefore, for tsetse fly control programmes, NGU traps could be the better choice. Conversely, of the stationary traps, pyramidal and biconical traps captured tsetse flies in the majority of sites, covering all three ecosystems better than any other traps; therefore, they would be suitable for scouting for tsetse infestation in any given area, thus sparing the costs of making traps for each specific Glossina species.Keywords: tseste; traps; densties; Glossina; mobile; stationary; Tanzania


Author(s):  
Purity K. Gitonga ◽  
Kariuki Ndung’u ◽  
Grace A. Murilla ◽  
Paul C. Thande ◽  
Florence N. Wamwiri ◽  
...  

African animal trypanosomiasis causes significant economic losses in sub-Saharan African countries because of livestock mortalities and reduced productivity. Trypanosomes, the causative agents, are transmitted by tsetse flies (Glossina spp.). In the current study, we compared and contrasted the virulence characteristics of five Trypanosoma congolense and Trypanosoma brucei isolates using groups of Swiss white mice (n = 6). We further determined the vectorial capacity of Glossina pallidipes, for each of the trypanosome isolates. Results showed that the overall pre-patent (PP) periods were 8.4 ± 0.9 (range, 4–11) and 4.5 ± 0.2 (range, 4–6) for T. congolense and T. brucei isolates, respectively (p < 0.01). Despite the longer mean PP, T. congolense–infected mice exhibited a significantly (p < 0.05) shorter survival time than T. brucei–infected mice, indicating greater virulence. Differences were also noted among the individual isolates with T. congolense KETRI 2909 causing the most acute infection of the entire group with a mean ± standard error survival time of 9 ± 2.1 days. Survival time of infected tsetse flies and the proportion with mature infections at 30 days post-exposure to the infective blood meals varied among isolates, with subacute infection–causing T. congolense EATRO 1829 and chronic infection–causing T. brucei EATRO 2267 isolates showing the highest mature infection rates of 38.5% and 23.1%, respectively. Therefore, our study provides further evidence of occurrence of differences in virulence and transmissibility of eastern African trypanosome strains and has identified two, T. congolense EATRO 1829 and T. brucei EATRO 2267, as suitable for tsetse infectivity and transmissibility experiments.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Morka Amante ◽  
Hika Tesgera

Trypanosomosis is the most serious disease of cattle, which causes great socioeconomic losses in the country. Its socioeconomic impact is reflected on direct losses due to mortality, morbidity, and reduction in milk and meat production, abortion and stillbirth, and also costs associated with combat of the disease are direct losses. A cross-sectional study was carried out to assess the prevalence of cattle trypanosomosis, and the apparent density and distribution of its fly vectors in selected study areas. The methods employed during the study were buffy coat technique for parasitological study and deploying trap for the collection of tsetse flies. A total of 1512 flies were trapped, and among them, 1162 were tsetse flies while 350 were biting flies. Higher apparent density for tsetse fly (7.7 F/T/D) followed by Stomoxys (0.9 F/T/D), Tabanus (0.8 F/T/D), and Hematopota (0.6 F/T/D) was recorded. Out of 638 examined cattle, the overall prevalence of trypanosomosis in the study area was 9.1% (58/638). Out of positive cases, Trypanosoma congolense (7.7%) was the dominant trypanosome species followed by Trypanosoma vivax (0.9%), Trypanosoma brucei (0.2%), and mixed infection of Trypanosoma brucei and Trypanosoma vivax (0.3%). There was no a significant difference (p>0.05) in trypanosome infection between age, sex, and trypanosome species. The prevalence of trypanosomosis on the bases of body condition was 2.8% for poor, 5.5% for medium, and 0.8% for good body condition. The overall prevalence of anemia was (36.8%), and presence of anemia was higher in trypanosome positive animals (62.5%) than in negative animals (34.3%) which is statistically significant (p<0.05, CI = 1.794–5.471). The overall mean packed cell volume (PCV) value for examined animals was 25.84 ± 0.252SE. Mean (PCV) of parasitaemic cattle (9.1%) was significantly (p<0.05) lower than that of aparasitaemic cattle (90%). This survey showed that trypanosomosis is still a core problem for livestock production of the study area. Therefore, more attention should be given to the control of both the disease and its vectors.


1968 ◽  
Vol 58 (2) ◽  
pp. 221-226 ◽  
Author(s):  
N. S. Irving

The increase in tolerance to topically applied chlorinated hydrocarbon insecticides shown by pregnant female tsetse flies was investigated in Glossina pallidipes. Solvent extracts of male and pregnant female flies, traeted with DDT and endosulfan labelled with carbon-14, were analysed by thin-layer chromatography and autoradiography of the developed chromatograms. No metabolites of these compounds were detected in the internal and faecal extracts. It was considered, therefore, that detoxication of absorbed insecticide was not the machanism responsible for the lower susceptibility to insecticide in the pregnant female fly. It was shown, however, by the above technique, that insecticide was absorbed by the in utero larva.Measurement of labelled DDT absorbed by the larva was carried out by liquid scintillation counting. The results indicated that this insecticide was slowly taken up by the larva, in an amount increasing with time, and it was suggested that inert storage of toxicant in the larva is a pregnant female. This would be in addition to the effects of increase in weight and other possible physiological factors.


2018 ◽  
Author(s):  
Joseph S. Eskew ◽  
Christopher G. Connell ◽  
Jared C. Cochran

AbstractEnzyme behavior has been described using the Michaelis-Menten mechanism. The analysis of extended time domains provides a means to extract the Michaelis-Menten constants through direct fitting of raw data. We have developed a scheme for determining Michaelis-Menten rate constants by appropriate fitting of multidimensional experimental data sets to the closed form of the Michaelis-Menten model. We considered how varying parameters in experimental data affect the accuracy of the remaining parameter estimates. We determine how to improve experimental design to achieve a given accuracy, relative to the amount of intrinsic or external error. We analyze this scheme on data sets built around 20 hypothetical and 2 natural enzymes (kinesin and apyrase) to test error sensitivity in different parameter regimes. Overall, we provide evidence that our data fitting regime will tolerate significant experimental error in the raw data and still converge on the four Michaelis-Menten constants.


2021 ◽  
Vol 15 (1) ◽  
pp. e0008267
Author(s):  
Edward Edmond Makhulu ◽  
Jandouwe Villinger ◽  
Vincent Owino Adunga ◽  
Maamun M. Jeneby ◽  
Edwin Murungi Kimathi ◽  
...  

African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.


1998 ◽  
Vol 88 (1) ◽  
pp. 59-64 ◽  
Author(s):  
A. Odulaja ◽  
S. Mihok ◽  
I.M. Abu-Zinid

AbstractSite and time effects are important factors determining trap catches of tsetse flies. These factors may interact significantly and therefore confound interpretation of time series data used for population monitoring. We therefore investigated the magnitude and importance of site × time interactions in trap catches of Glossina pallidipes Austen and G. longipennis Corti using a 2200 trap-days (400 trap-months) data set. The interaction was found to be siginificant (p<0.05) in 46–100% of the combinations of different numbers of months and sites between 2 and 12. The mean percent variance due to the interaction ranged between 4% and 28% for G. pallidipes and 12% and 36% for G.longipennis. The interaction was usually less important than the effect of site alone but more important than the effect of time alone. These results suggest that tsetse researchers should examine critically the adequacy of existing approaches to population monitoring with traps and to testing new traps and odour baits.


2018 ◽  
Vol 15 (149) ◽  
pp. 20180600 ◽  
Author(s):  
Sabrina Hross ◽  
Fabian J. Theis ◽  
Michael Sixt ◽  
Jan Hasenauer

Spatial patterns are ubiquitous on the subcellular, cellular and tissue level, and can be studied using imaging techniques such as light and fluorescence microscopy. Imaging data provide quantitative information about biological systems; however, mechanisms causing spatial patterning often remain elusive. In recent years, spatio-temporal mathematical modelling has helped to overcome this problem. Yet, outliers and structured noise limit modelling of whole imaging data, and models often consider spatial summary statistics. Here, we introduce an integrated data-driven modelling approach that can cope with measurement artefacts and whole imaging data. Our approach combines mechanistic models of the biological processes with robust statistical models of the measurement process. The parameters of the integrated model are calibrated using a maximum-likelihood approach. We used this integrated modelling approach to studyin vivogradients of the chemokine (C-C motif) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and are important in the adaptive immune response. Using artificial data, we verified that the integrated modelling approach provides reliable parameter estimates in the presence of measurement noise and that bias and variance of these estimates are reduced compared to conventional approaches. The application to experimental data allowed the parametrization and subsequent refinement of the model using additional mechanisms. Among other results, model-based hypothesis testing predicted lymphatic vessel-dependent concentration of heparan sulfate, the binding partner of CCL21. The selected model provided an accurate description of the experimental data and was partially validated using published data. Our findings demonstrate that integrated statistical modelling of whole imaging data is computationally feasible and can provide novel biological insights.


1992 ◽  
Vol 82 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Steve Mihok ◽  
Leonard H. Otieno ◽  
Christopher S. Tarimo

AbstractTrypanosome infections were monitored in three species of tsetse fly (Glossina pallidipes Austen, G. morsitans centralis Machado, and G. brevipalpis News-tead) at four locations in the Kagera River region of Rwanda from May 1989 to September 1990. Two of the four areas (Mpanga Ranch and Bukora Ranch) were subjected to tsetse fly suppression operations with odour-baited traps. Proboscis infections of the Trypanosoma congolense and T. vivax types accounted for roughly equal numbers of the 207 mature infections detected (3.8%). Variation in infection rates was area-specific rather than tsetse species-specific. Order of magnitude differences in tsetse fly densities among areas were not correlated with differences in infection rates at the start of tsetse fly suppression operations. Similarly, declines in population density on both control and experimental areas were not associated with significant changes in infection rates. The prevalence of trypanosomiasis in cattle at Bukora Ranch was not affected by a roughly 90% reduction in Glossina densities. T. congolense accounted for 79% of the infections at an overall prevalence rate of 5.5%. Trypanosomiasis in cattle persisted at extremely low densities of about 0.1 fly/trap/day. Treatment of cattle with diminazene aceturate (BereniR) suggested that many T. congolense parasites were drug resistant, and hence, were cycling among cattle due to the few Glossina present.


2020 ◽  
Author(s):  
Mallion Kangume ◽  
Denis Muhangi ◽  
Joseph Byaruhanga ◽  
Aggrey Agaba ◽  
Joachim Sserunkuma ◽  
...  

Abstract Background: African Animal Trypanosomiasis (AAT) is an infectious disease of economic and veterinary importance in Sub-Saharan Africa. The current study aimed at providing baseline information on tsetse fly distribution and occurrence of Trypanosoma species in cattle and goats within and around Queen Elizabeth National Park (QENP), in western Uganda. A minimal entomological survey was conducted in April 2017 while blood samples collected from cattle (n = 576) and goats (n = 319) in June 2015 and May 2017 were subjected to Polymerase Chain Reaction (PCR) to determine the occurrence of Trypanosoma species.Results: Glossina pallidipes and G. fuscipes were the only tsetse fly species trapped in the study area with apparent density of 20.6. The overall prevalence of Trypanosoma spp. was 27% for goats and approximately 38% for cattle. The most prevalent Trypanosoma spp. in goats was T. brucei (n = 60, 18.8%) while the most prevalent in cattle was T. congolense (n = 102, 27.1%). In both cattle and goats, a dual infection of T. brucei + T. congolense was most encountered. In goats a triple infection of T. brucei + T. congolense + T. vivax was higher than that in cattle. Conclusions: Current findings show that there are two species of tsetse flies, and three species of Trypanosoma, important in transmission of AAT in both cattle and goats. Control efforts of AAT have mainly focused on cattle and this study proves that prevention and control efforts should also involve goat farmers.


Sign in / Sign up

Export Citation Format

Share Document