Assessment of information processing in working memory in applied settings: the paper & pencil memory scanning test

2007 ◽  
Vol 37 (9) ◽  
pp. 1335-1344 ◽  
Author(s):  
WIM VAN DER ELST ◽  
MARTIN P. J. VAN BOXTEL ◽  
GERARD J. P. VAN BREUKELEN ◽  
JELLE JOLLES

ABSTRACTBackgroundSternberg's Memory Scanning Test (MST) is a useful paradigm for evaluating the speed and efficiency of information processing in working memory. Unfortunately, the classical MST has major drawbacks for use in applied settings such as the clinic. For example, its administration time is long and the test is too difficult for older people or people with cognitive disorders. It would be advantageous to have a test for the assessment of information processing in working memory for use in applied settings, for example in differential diagnostics in clinical settings.MethodThe MST was modified into a format that makes it more appropriate for use in the clinic, the Paper & Pencil MST (P&P MST). The influence of age and age-extrinsic factors on the P&P MST was evaluated in a large sample (n=1839) of healthy and cognitively intact adults (24–81 years) to establish the normal range of performance.ResultsAge and education affected all components of information processing in working memory. Gender did not affect the non-memory processing stages in the P&P MST, but affected the speed of memory scanning. An Age×Gender interaction was observed, which suggested that females who were aged below 55 scanned working memory faster than males, and vice versa for people aged above 55.ConclusionsThe established P&P MST norms provide a useful tool in applied settings when a person's memory scanning and non-memory processes in working memory are to be evaluated.

Assessment ◽  
2021 ◽  
pp. 107319112110451
Author(s):  
Alan Smerbeck ◽  
Lauren Olsen ◽  
Lindsay F. Morra ◽  
Jeremy Raines ◽  
David J. Schretlen ◽  
...  

The Global Neuropsychological Assessment (GNA) is an extremely brief battery of cognitive tasks assessing episodic memory, processing speed, working memory, verbal fluency, executive function, and mood. It can be given in under 15 minutes, has five alternate forms, and does not require an examinee to be literate. The purpose of this study was to quantify practice effects over repeated administrations and assess comparability of the GNA’s five alternate forms, preparing the battery for repeated administration in research and clinical settings. Forty participants each completed all five GNA forms at weekly intervals following a Latin square design (i.e., each form was administered at every position in the sequence an equal number of times). In a cognitively intact population, practice effects of 0.56 to 1.06 SD were observed across GNA measures when comparing the first and fifth administration. Most GNA tests showed nonsignificant interform differences with cross-form means differing by 0.35 SD or less, with the exception of modest but statistically significant interform differences for the GNA Story Memory subtest across all five forms. However, post hoc analysis identified clusters of two and three Story Memory alternate forms that were equivalent.


Author(s):  
Jörg-Tobias Kuhn ◽  
Elena Ise ◽  
Julia Raddatz ◽  
Christin Schwenk ◽  
Christian Dobel

Abstract. Objective: Deficits in basic numerical skills, calculation, and working memory have been found in children with developmental dyscalculia (DD) as well as children with attention-deficit/hyperactivity disorder (ADHD). This paper investigates cognitive profiles of children with DD and/or ADHD symptoms (AS) in a double dissociation design to obtain a better understanding of the comorbidity of DD and ADHD. Method: Children with DD-only (N = 33), AS-only (N = 16), comorbid DD+AS (N = 20), and typically developing controls (TD, N = 40) were assessed on measures of basic numerical processing, calculation, working memory, processing speed, and neurocognitive measures of attention. Results: Children with DD (DD, DD+AS) showed deficits in all basic numerical skills, calculation, working memory, and sustained attention. Children with AS (AS, DD+AS) displayed more selective difficulties in dot enumeration, subtraction, verbal working memory, and processing speed. Also, they generally performed more poorly in neurocognitive measures of attention, especially alertness. Children with DD+AS mostly showed an additive combination of the deficits associated with DD-only and A_Sonly, except for subtraction tasks, in which they were less impaired than expected. Conclusions: DD and AS appear to be related to largely distinct patterns of cognitive deficits, which are present in combination in children with DD+AS.



2016 ◽  
Vol 21 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Silvia Convento ◽  
Cristina Russo ◽  
Luca Zigiotto ◽  
Nadia Bolognini

Abstract. Cognitive rehabilitation is an important area of neurological rehabilitation, which aims at the treatment of cognitive disorders due to acquired brain damage of different etiology, including stroke. Although the importance of cognitive rehabilitation for stroke survivors is well recognized, available cognitive treatments for neuropsychological disorders, such as spatial neglect, hemianopia, apraxia, and working memory, are overall still unsatisfactory. The growing body of evidence supporting the potential of the transcranial Electrical Stimulation (tES) as tool for interacting with neuroplasticity in the human brain, in turn for enhancing perceptual and cognitive functions, has obvious implications for the translation of this noninvasive brain stimulation technique into clinical settings, in particular for the development of tES as adjuvant tool for cognitive rehabilitation. The present review aims at presenting the current state of art concerning the use of tES for the improvement of post-stroke visual and cognitive deficits (except for aphasia and memory disorders), showing the therapeutic promises of this technique and offering some suggestions for the design of future clinical trials. Although this line of research is still in infancy, as compared to the progresses made in the last years in other neurorehabilitation domains, current findings appear very encouraging, supporting the development of tES for the treatment of post-stroke cognitive impairments.


2009 ◽  
Vol 33 (11) ◽  
pp. 1870-1879 ◽  
Author(s):  
Alberto Crego ◽  
Socorro Rodriguez Holguín ◽  
María Parada ◽  
Nayara Mota ◽  
Montserrat Corral ◽  
...  

2021 ◽  
Author(s):  
Geisa B. Gallardo‐Moreno ◽  
Francisco J. Alvarado‐Rodríguez ◽  
Rebeca Romo‐Vázquez ◽  
Hugo Vélez‐Pérez ◽  
Andrés A. González‐Garrido

2001 ◽  
Vol 31 (5) ◽  
pp. 915-922 ◽  
Author(s):  
S. KÉRI ◽  
O. KELEMEN ◽  
G. BENEDEK ◽  
Z. JANKA

Background. The aim of this study was to assess visual information processing and cognitive functions in unaffected siblings of patients with schizophrenia, bipolar disorder and control subjects with a negative family history.Methods. The siblings of patients with schizophrenia (N = 25), bipolar disorder (N = 20) and the controls subjects (N = 20) were matched for age, education, IQ, and psychosocial functioning, as indexed by the Global Assessment of Functioning scale. Visual information processing was measured using two visual backward masking (VBM) tests (target location and target identification). The evaluation of higher cognitive functions included spatial and verbal working memory, Wisconsin Card Sorting Test, letter fluency, short/long delay verbal recall and recognition.Results. The relatives of schizophrenia patients were impaired in the VBM procedure, more pronouncedly at short interstimulus intervals (14, 28, 42 ms) and in the target location task. Marked dysfunctions were also found in the spatial working memory task and in the long delay verbal recall test. In contrast, the siblings of patients with bipolar disorder exhibited spared performances with the exception of a deficit in the long delay recall task.Conclusions. Dysfunctions of sensory-perceptual analysis (VBM) and working memory for spatial information distinguished the siblings of schizophrenia patients from the siblings of individuals with bipolar disorder. Verbal recall deficit was present in both groups, suggesting a common impairment of the fronto-hippocampal system.


2017 ◽  
Vol 23 (1) ◽  
pp. 102-117 ◽  
Author(s):  
Lu Jiao ◽  
Cong Liu ◽  
Ruiming Wang ◽  
Baoguo Chen

Aims: The present study aimed to investigate the effect of task demand in working memory on bilingual cognitive advantage (interference suppression and response inhibition) in young bilinguals. Methodology: Experiment 1 was performed with the flanker, Go/No-go, and modified flanker tasks, in which the first two tasks were involved in lower storage demand of working memory and the last task was involved in higher storage demand of working memory. Experiment 2 was performed with the Conditional-Go/No-go task, with a higher processing demand of working memory. Data and analysis: Reaction time and accuracy data were analyzed using a repeated measures analysis of variance. Findings/Conclusions: In Experiment 1, results showed that compared to monolinguals, the bilingual advantage in interference suppression occurred in the task with high storage demand (i.e., modified flanker task) and not in the low demand task (i.e., flanker task); however, this advantage effect was not observed in response inhibition. In Experiment 2, with the increasing working memory processing demand of tasks, the bilingual advantage in response inhibition was observed. Originality: The current study firstly examined the effect of task working memory demand on the bilingual advantage and provided some restrictive conditions for the advantage. Significance/Implications: Our results provide new evidence to support the effect of bilingual cognitive advantage.


2021 ◽  
Vol 13 ◽  
Author(s):  
Dibyadeep Datta ◽  
Shannon N. Leslie ◽  
Elizabeth Woo ◽  
Nishita Amancharla ◽  
Ayah Elmansy ◽  
...  

Glutamate carboxypeptidase II (GCPII) expression in brain is increased by inflammation, and reduces NAAG (N-acetyl aspartyl glutamate) stimulation of mGluR3 signaling. Genetic insults in this signaling cascade are increasingly linked to cognitive disorders in humans, where increased GCPII and or decreased NAAG-mGluR3 are associated with impaired prefrontal cortical (PFC) activation and cognitive impairment. As aging is associated with increased inflammation and PFC cognitive deficits, the current study examined GCPII and mGluR3 expression in the aging rat medial PFC, and tested whether GCPII inhibition with 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA) would improve working memory performance. We found that GCPII protein was expressed on astrocytes and some microglia as expected from previous studies, but was also prominently expressed on neurons, and showed increased levels with advancing age. Systemic administration of the GCPII inhibitor, 2-MPPA, improved working memory performance in young and aged rats, and also improved performance after local infusion into the medial PFC. As GCPII inhibitors are well-tolerated, they may provide an important new direction for treatment of cognitive disorders associated with aging and/or inflammation.


2018 ◽  
Vol 49 (4) ◽  
pp. 590-597 ◽  
Author(s):  
Rachel Muster ◽  
Saadia Choudhury ◽  
Wendy Sharp ◽  
Steven Kasparek ◽  
Gustavo Sudre ◽  
...  

AbstractBackgroundWhile the neuroanatomic substrates of symptoms of attention deficit hyperactivity disorder (ADHD) have been investigated, less is known about the neuroanatomic correlates of cognitive abilities pertinent to the disorder, particularly in adults. Here we define the neuroanatomic correlates of key cognitive abilities and determine if there are associations with histories of psychostimulant medication.MethodsWe acquired neuroanatomic magnetic resonance imaging data from 264 members of 60 families (mean age 29.5; s.d. 18.4, 116 with ADHD). Using linear mixed model regression, we tested for associations between cognitive abilities (working memory, information processing, intelligence, and attention), symptoms and both cortical and subcortical volumes.ResultsSymptom severity was associated with spatial working memory (t = −3.77, p = 0.0002), processing speed (t = −2.95, p = 0.004) and a measure of impulsive responding (t = 2.19, p = 0.03); these associations did not vary with age (all p > 0.1). Neuroanatomic associations of cognition varied by task but centered on prefrontal, lateral parietal and temporal cortical regions, the thalamus and putamen. The neuroanatomic correlates of ADHD symptoms overlapped significantly with those of working memory (Dice's overlap coefficient: spatial, p = 0.003; verbal, p = 0.001) and information processing (p = 0.02). Psychostimulant medication history was associated with neither cognitive skills nor with a brain–cognition relationships.ConclusionsDiagnostic differences in the cognitive profile of ADHD does not vary significantly with age; nor were cognitive differences associated with psychostimulant medication history. The neuroanatomic substrates of working memory and information overlapped with those for symptoms within these extended families, consistent with a pathophysiological role for these cognitive skills in familial ADHD.


Sign in / Sign up

Export Citation Format

Share Document