Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease

2014 ◽  
Vol 44 (15) ◽  
pp. 3341-3356 ◽  
Author(s):  
R. C. Wolf ◽  
F. Sambataro ◽  
N. Vasic ◽  
M. S. Depping ◽  
P. A. Thomann ◽  
...  

Background.Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's ‘resting state’ could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients.Method.Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and ‘biological parametric mapping’ analyses to investigate the impact of atrophy on neural activity.Results.Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition.Conclusions.This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

2014 ◽  
Vol 36 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Omar F.F. Odish ◽  
Annette A. van den Berg-Huysmans ◽  
Simon J.A. van den Bogaard ◽  
Eve M. Dumas ◽  
Ellen P. Hart ◽  
...  

2016 ◽  
Vol 27 ◽  
pp. 41-46 ◽  
Author(s):  
Wanglin Liu ◽  
Jing Yang ◽  
Ke Chen ◽  
ChunYan Luo ◽  
JeanMarc Burgunder ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Costanza Ferrari Bardile ◽  
Harwin Sidik ◽  
Reynard Quek ◽  
Nur Amirah Binte Mohammad Yusof ◽  
Marta Garcia-Miralles ◽  
...  

Background: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington’s disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. Objective: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. Methods: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. Results: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. Conclusion: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0133709 ◽  
Author(s):  
Jessica Despard ◽  
Anne-Marie Ternes ◽  
Bleydy Dimech-Betancourt ◽  
Govinda Poudel ◽  
Andrew Churchyard ◽  
...  

2011 ◽  
Vol 33 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Yufeng Jiang ◽  
Hailong Lv ◽  
Shanshan Huang ◽  
Huiping Tan ◽  
Yinong Zhang ◽  
...  

2011 ◽  
Vol 10 (12) ◽  
pp. 1049-1057 ◽  
Author(s):  
Justo Garcia de Yebenes ◽  
Bernhard Landwehrmeyer ◽  
Ferdinando Squitieri ◽  
Ralf Reilmann ◽  
Anne Rosser ◽  
...  

Author(s):  
Georg Northoff

Some recent philosophical discussions consider whether the brain is best understood as an open or closed system. This issue has major epistemic consequences akin to the scepticism engendered by the famous Cartesian demon. Specifically, one and the same empirical theory of brain function, predictive coding, entailing a prediction model of brain, have been associated with contradictory views of the brain as either open (Clark, 2012, 2013) or closed (Hohwy, 2013, 2014). Based on recent empirical evidence, the present paper argues that contrary to appearances, these views of the brain are compatible with one another. I suggest that there are two main forms of neural activity in the brain, one of which can be characterized as open, and the other as closed. Stimulus-induced activity, because it relies on predictive coding is indeed closed to the world, which entails that in certain respects, the brain is an inferentially secluded and self-evidencing system. In contrast, the brain’s resting state or spontaneous activity is best taken as open because it is a world-evidencing system that allows for the brain’s neural activity to align with the statistically-based spatiotemporal structure of objects and events in the world. This model requires an important caveat, however. Due to its statistically-based nature, the resting state’s alignment to the world comes in degrees. In extreme cases, the degree of alignment can be extremely low, resulting in a resting state that is barely if at all aligned to the world. This is for instance the case in schizophrenia. Clinical symptoms such as delusions and hallucinations in schizophrenics are indicative of the fundamental delicateness of the alignment between the brain’s resting-state and the world’s phenomena. Nevertheless, I argue that so long as we are dealing with a well-functioning brain, the more dire epistemic implications of predictive coding can be forestalled. That the brain is in part a self-evidencing system does not yield any generalizable reason to worry that human cognition is out of step with the real world. Instead, the brain is aligned to the world accounting for “world-brain relation” that mitigates sceptistic worries.


2019 ◽  
Vol 8 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Iris Trinkler ◽  
Philippe Chéhère ◽  
Julie Salgues ◽  
Marie-Lorraine Monin ◽  
Sophie Tezenas du Montcel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document