scholarly journals Atmospheric Radiocarbon at the End of the Last Glacial: An Estimate Based on AMS Radiocarbon Dates on Terrestrial Macrofossils From Lake Sediments

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 795-804 ◽  
Author(s):  
Hugo Zbinden ◽  
Michael Andree ◽  
Hans Oeschger ◽  
Brigitta Ammann ◽  
Andre Lotter ◽  
...  

The main purpose of this work is to reconstruct the atmospheric Δ 14C in the glacial-postglacial transition, 14,000 – 10,000 BP, a range not covered by the tree-ring calibration curve. We measured 14C/12C ratios on series of terrestrial macrofossils from sediments of two Swiss lakes. We selected exclusively plant remains of recognizable terrestrial origin that are not affected by hard water and thus reflect atmospheric 14C concentration. Due to the scarcity of such material, we used accelerator mass spectroscopy. Cores of two lakes were measured to eliminate local effects and to check the reproducibility of results. This required a reliable, 14C-independent correlation of the cores, obtained through local pollen zone boundaries 14C ages were obtained as a function of the depth in the cores. If sedimentation rates are known ages can be converted into Δ 14C values. We also attempted estimating sedimentation rates; calculations are based on the Swedish varve chronology. Results were combined to form an entire data set. The Δ 14C curve shows an increase with time during the Allerød and decreases during Preboreal and Bølling periods. Probabilities for these 14C variations are discussed.

2010 ◽  
Vol 31 (1-2) ◽  
pp. 151-159 ◽  
Author(s):  
Gordon J. Ogden

Although nearly 50 years have passed since P.B. Sears introduced pollen analysis to North America, it remains an occult art. Dramatic improvements in sampling and analytic techniques continue to be limited by intractable problems of differential production, dispersal, ballistics, sedimentation, and preservation. It is a basic tenet of pollen stratigraphy that the data set, consisting primarily of microfossils preserved in sediments, is better than anything we have yet been able to do with it. Basic agreement between late- and postglacial pollen records has been confirmed wherever the method has been applied. Quantitative sampling techniques, sample preparation, and analytic procedures, together with multiple radiocarbon dates, permits calculation of sedimentation rates and absolute pollen influx. Of approximately 300 sediment cores from northeastern North America, fewer than 30 have more than 3 radiocarbon determinations from which least squares power curve regressions can be reliably calculated in the determination of sedimentation rates. Analogy with modern environments represented by surface pollen spectra is limited by an insufficient number of samples of uniform quality to characterize a vegetational mosaic covering 40 degrees of latitude (40-80°N) and longitude (60-100°W). The present surface pollen data bank includes about 700 samples, unevenly spaced and of uneven quality, permitting a grid resolution of no better than 10,000 km2.


Radiocarbon ◽  
1997 ◽  
Vol 39 (1) ◽  
pp. 27-32 ◽  
Author(s):  
John C. Vogel ◽  
Joel Kronfeld

Twenty paired 14C and U/Th dates covering most of the past 50,000 yr have been obtained on a stalagmite from the Cango Caves in South Africa as well as some additional age-pairs on two stalagmites from Tasmania that partially fill a gap between 7 ka and 17 ka ago. After allowance is made for the initial apparent 14C ages, the age-pairs between 7 ka and 20 ka show satisfactory agreement with the coral data of Bard et al. (1990, 1993). The results for the Cango stalagmite between 25 ka and 50 ka show the 14C dates to be substantially younger than the U/Th dates except at 49 ka and 29 ka, where near correspondence occurs. The discrepancies may be explained by variations in 14C production caused by changes in the magnetic dipole field of the Earth. A tentative calibration curve for this period is offered.


2000 ◽  
Vol 66 ◽  
pp. 257-295 ◽  
Author(s):  
Trevor Kirk ◽  
George Williams ◽  
A. Caseldine ◽  
J. Crowther ◽  
I. Darke ◽  
...  

Excavations at the Glandy Cross monumental complex during 1991 and 1992 formed part of an integrated programme of evaluation, rescue, and research by Dyfed Archaeological Trust (DAT). Enclosures, pit circles, standing stones, and cairns were excavated and their environs systematically surveyed. Radiocarbon dates show the monumental complex to have been constructed between c. 2190–1530 cal BC. However, the earliest activity at the site may date to c. 4470–4230 cal BC. A defended enclosure was constructed on the peripheries of the complex c. 830–510 cal BC.The 1991–92 excavation results are presented along with a summary of survey, salvage, and research spanning the period 1981 to 1992. This new data set is tentatively interpreted in terms of historical process and the social practice of monumental construction. A brief commentary on heritage management at Glandy Cross is also presented.A note on authorship: one of the authors (George Williams) directed the Glandy Cross excavations during 1991–92 and prepared an initial draft of the project report. Following his retirement from DAT a project editor (Trevor Kirk) was commissioned by Cadw: Welsh Historic Monuments to guide the project towards publication. This paper was largely penned by the project editor, though the excavation and survey data were produced by George Williams and his fieldwork team. The excavation and survey archives are held at the offices of DAT.


1998 ◽  
Vol 49 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Marie-Pierre Ledru ◽  
Jacques Bertaux ◽  
Abdelfettah Sifeddine ◽  
Kenitiro Suguio

Environmental conditions of the lowland tropical forests during the last glacial maximum (LGM) between ca 20,000 and 18,000 14C yr B.P., are reevaluated in terms of dating control and lithology analyzed in seven pollen records from South America. The reevaluation shows that probably in none of the published records are LGM sediments present or abundant. This conclusion is based on the occurrence of abrupt lithologic changes coupled with changes in sedimentation rate interpolated from radiocarbon dates. These findings suggest that the LGM was represented probably by a hiatus of several thousand years, indicative of drier climates than before or after.


2022 ◽  
Author(s):  
Stephen P Lound ◽  
Gavin F Birch ◽  
Deirdre Dragovich

Abstract Middle Harbour is a drowned-river valley located adjacent to the larger Sydney estuary, Australia. Extensive, high-resolution seismic data were correlated with borehole, land use, topographical, and geological data to calculate the mass of genetically different sediment deposits in Middle Harbour. The Harbour follows a well-defined drowned river-valley structure featuring small fluvial bedload delta deposits in the upper reaches of the embayments, a deep, central extensive mud basin overlying transgressive basal accumulations and a large flood-tide delta at the entrance. Deposits of an estimated 5,094 t of bedload, 21,143 t of suspended sediment and 5,947 t of transgressive basal material located in the estuary provided sedimentation rates of 0.68 t y-1, 1.29 t y-1, and 2.86 t y -1 respectively. These rates, determined from measured accumulations, were surprisingly low and substantially smaller than modelled rates. However, low sedimentation rates for suspended material may be due to fine sediment escaping over the top of the marine tidal delta, which effectively traps all bedload material from exiting the Harbour. Results of this study indicate that Holocene bedload sedimentation in Middle Harbour was slow and regular until a rapid increase after urbanisation commenced in the catchment. Most pre-Holocene material was eroded from Middle Harbour during the Last Glacial period with sediment currently present in the estuary having been deposited since sea-level recovery.


1996 ◽  
Vol 19 ◽  
pp. 61-78
Author(s):  
Marcelo Eduardo Dantas ◽  
Ana Luiza Coelho Netto

The coffee cycle represented a period of intense morphodynamic activity, proceeding by a general deforestation. On the Paraíba do Sul Middle Valley, this economic cycle lasted 100 years aproximately (1780-1880). Historical documents, radiocarbon dates and volumetric measurements of the valley fills correlated from the coffee time, have provided informations on the environmental impact, particularly associated with climatic and hidro-erosive processes both on the hillslopes and fluvial domains. Deforestation introduced a drought period up to 6 months and also to an increasing frequency of intense rainstorms, particularly in the summer. Along the Piracema river valley, sedimentation rates attained about 70.000m³km/year. Transfering this volume to the source-area on the hillslopes, it gives an estimate relief downwearing around 7,5 cm depth, resulting on the removal of the organic rich A horizon and showing so, the catastrophic effect of this economic activity, resulting in an extremely wasted degraded landscape.


Geochronology ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 133-154
Author(s):  
Julia Kalanke ◽  
Jens Mingram ◽  
Stefan Lauterbach ◽  
Ryskul Usubaliev ◽  
Rik Tjallingii ◽  
...  

Abstract. Microfacies analysis of a sediment record from Chatyr Kol lake (Kyrgyz Republic) reveals the presence of seasonal laminae (varves) from the sediment base dated at 11 619±603 BP (years Before Present) up to ∼360±40 BP. The Chatvd19 floating varve chronology relies on replicate varve counts on overlapping petrographic thin sections with an uncertainty of ±5 %. The uppermost non-varved interval was chronologically constrained by 210Pb and 137Cs gamma spectrometry and interpolation based on varve thickness measurements of adjacent varved intervals with an assumed maximum uncertainty of 10 %. Six varve types were distinguished, are described in detail, and show a changing predominance of clastic-organic, clastic-calcitic or clastic-aragonitic, calcitic-clastic, organic-clastic, and clastic-diatom varves throughout the Holocene. Variations in varve thickness and the number and composition of seasonal sublayers are attributed to (1) changes in the amount of summer or winter/spring precipitation affecting local runoff and erosion and/or to (2) evaporative conditions during summer. Radiocarbon dating of bulk organic matter, daphnia remains, aquatic plant remains, and Ruppia maritima seeds reveals reservoir ages with a clear decreasing trend up core from ∼6150 years in the early Holocene, to ∼3000 years in the mid-Holocene, to ∼1000 years and less in the late Holocene and modern times. In contrast, two radiocarbon dates from terrestrial plant remains are in good agreement with the varve-based chronology.


1988 ◽  
Vol 25 (7) ◽  
pp. 1037-1048 ◽  
Author(s):  
Mel A. Reasoner ◽  
Nathaniel W. Rutter

Lake O'Hara (subalpine) and Opabin Lake (alpine) are situated directly adjacent to a high section of the Continental Divide in the central Canadian Rocky Mountains. Core samples recovered from the lakes show a consistent stratigraphy comprising gyttja and underlying inorganic clastic sediments. The gyttja contains Bridge River (2350 years BP) and Mazama (6800 years BP) tephras and is separated from the lower clastic sediments by a sharp, conformable contact. Radiocarbon dates obtained from conifer needles, extracted from directly above the contact, indicate that deglaciation had proceeded upvalley from the O'Hara basin priorto ca. 10 100 years BP. Preliminary palaeobotanical and macrofossil data suggest that a Pinus–Abies forest with lesser Picea was established in the vicinity of Lake O'Hara by this time. Consequently, the minimum age of moraine systems situated downvalley from Lake O'Hara is Late Wisconsinan.Mean annual sedimentation rates were derived from sediment thickness data from 14 Lake O'Hara and 2 Opabin Lake cores. Averaged total sedimentation rate values from the Lake O'Hara cores are 0.13 mm/year (post-Bridge River), 0.13 mm/year (Mazama – Bridge River) and 0.05 mm/year (11 000 years BP – Mazama). Averaged total sedimentation rate values from the Opabin Lake cores are 0.19 mm/year (post-Bridge River), 0.07 mm/year (Mazama – Bridge River), and 0.06 mm/year (8530 years BP – Mazama). Higher total sedimentation rates in post-Bridge River sediments of Opabin Lake are presumably related to climatic conditions associated with more extensive upvalley ice during the last ca. 2300 years. Highly variable sedimentation rate data obtained from the Lake O'Hara cores suggest that the use of sedimentation rate data as a proxy record of upvalley glacial activity is inappropriate in the Lake O'Hara setting where inflowing glacial stream systems are interrupted by upvalley lake basins.Aspartic acid D/L ratios were derived from bulk gyttja samples of known age from seven Lake O'Hara and one Opabin Lake core. In all but two cases, aspartic acid D/L ratios increase consistently with respect to sediment age. The increasing downcore trends in the aspartic acid D/L ratios suggest the possibility of using amino acid data from bulk gyttja samples as a check for reworking in cases where chronostratigraphic markers are absent.


Author(s):  
Leslie L. Bush

Botanical remains were identified from 27 lots from the Washington Square Mound site (41NA49). The primary occupation at the site is Middle Caddo period in age. The first pooled set of calibrated radiocarbon dates from the site fell into the period A.D. 1268-1302, while a recent set of five calibrated dates from samples of plant remains discussed in this article range from A.D. 1279 + 17; (2) A.D. 1358 + 57; and three dates on charred corn from Features 36, 81, and 86 range from as early as A.D. 1394 to as late as A.D. 1437. These dates as a group fall in the Middle Caddo period; there is limited evidence at the site for other, smaller occupations, including Late Caddo and Late Woodland/Early Caddo. At least three mounds were visible in the nineteenth century. Much of the site was never plowed, a situation that has resulted in intact shallow deposits and unusually large pottery sherds, although a high school has been built over parts of the non-mound site area. Labels of botanical lots that included excavation dates indicate a range from 1979 to 1983, associating the botanical remains with Stephen F. Austin State University Field School excavations that took place during this time. At least nine features are represented in the botanical lots. Four are described as charcoal-filled pits, one as a pit, and one as a post mold. Feature 36 was a corn cob concentration . Botanical lots for Features 62, 81, and 199 are also present. The Washington Square Mound site is situated in the city of Nacogdoches, Texas, on an interfluve between Banita Creek and La Nana Creek, which drain into La Nana Bayou and the Angelina River. The area lies squarely in the Pineywoods ecological zone, the westernmost extension of the great Southeastern Evergreen Forest that reaches across the southeastern United States to the Atlantic coast (Braun 2001:281). The dominant vegetation type in an upland area such as Washington Square during presettlement times would have been a shortleaf pine community, where shortleaf pines (Pinus echinata) share dominance with dry-site oaks such as southern red oak (Quercus falcata), post oak (Q. stellata), and blackjack oak (Q. marilandica), hickories (Carya spp.), and elms (Ulmus spp.) Springs and marshy areas nearby would have offered aquatic and wetland plants such as river cane (Arundinaria gigantea). A spring-fed pond is reported to have existed north of the site, and a marshy area to the southwest. Pollen studies indicate that use of the modern and recent vegetation is appropriate for understanding the plants and attendant animal resources available to occupants of the sites during prehistoric times. Some fluctuations in rainfall and temperature have taken place, however. In addition, more frequent fires would have made the understory in the uplands less prominent than today. Early explorers in East Texas and other parts of the Eastern Woodlands noted the open, park-like nature of many woodlands.


1999 ◽  
Vol 18 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Ken H. Matson ◽  
Dick Paschal ◽  
Arthur B. Weglein

Sign in / Sign up

Export Citation Format

Share Document