Decline of Weed Seeds and Seedling Emergence Over Five Years as Affected by Soil Disturbances

Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Grant H. Egley ◽  
Robert D. Williams

Weed emergence and viable weed seed numbers were determined in field plots during a 5-yr period where reseeding was prevented. Known numbers of seeds of seven weed species were added to the native seed population at the beginning of the study. Plots were nontilled or tilled to depths of 0, 5, 10, and 15 cm early in the spring of each year. Velvetleaf, spurred anoda, hemp sesbania, morningglory species, and pigweed species emergence was significantly greater from the nontilled plots during the first year after seeds were added to the native seed population. Tillage, regardless of depth, reduced weed emergence during the first year where seeds were added to the plots but had no effect on emergence from plots where no seeds were added. Tillage during the second through the fifth year did not affect emergence regardless of the addition of seeds. of the 5-yr emergence totals, 61 to 88% of all weeds in all plots emerged during the first year and 9 to 23% emerged during the second year. The 5-yr decline rate for emergence of all weeds was exponential. Viable seeds of prickly sida, spurges, and pigweeds in the nontilled plots declined from 590, 1531, and 4346 m−2, respectively, to zero by the third year. Tillage did not affect the decline. However, weed emergence in the field indicated that a few (1.0 to 5.6 m−2) seeds of those weeds were still viable after 3 yr. In nontilled plots, many recently added seeds were on or near the soil surface and germinated during the first year. Tillage moved many seeds to sites that were unfavorable for germination and emergence during the first year.

Weed Science ◽  
1978 ◽  
Vol 26 (3) ◽  
pp. 249-251 ◽  
Author(s):  
G. H. Egley ◽  
R. D. Williams

Glyphosate [N-(phosphonomethyl)glycine] (30, 125, 250 mg/L) in petri dishes had no effect on germination of prickly sida(Sida spinosaL.), velvetleaf(Abutilon theophrastiMedic), barnyardgrass [Echinocloa crus-galli(L.) Beauv.] and johnsongrass [Sorghum halepense(L.) Pers.] seeds, but additional experimentation indicated that glyphosate stimulated germination of redroot pigweed(Amaranthus retroflexusL.) seeds. Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) (30, 125, 250 mg/L) did not affect germination of the three broadleaf species, but inhibited johnsongrass and barnyardgrass germination. In the greenhouse, soil surface applications of glyphosate (1.1, 2.2, 9.0 kg/ha) did not significantly affect emergence of these five weed species when they were on or beneath the soil surface at time of treatment. Paraquat (same rates) did not affect broadleaf weed emergence but some rates inhibited grass weed emergence when the seeds were treated while on the soil surface. It is unlikely that normal field use rates of glyphosate will influence weed emergence; whereas paraquat may inhibit the emergence of some grass weeds if the herbicide contacts seeds on the soil surface.


2017 ◽  
Vol 10 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Antonio DiTommaso ◽  
Lindsey R. Milbrath ◽  
Scott H. Morris ◽  
Charles L. Mohler ◽  
Jeromy Biazzo

Pale swallowwort and black swallowwort are European viny milkweeds that have become invasive in many habitats in the northeastern United States and southeastern Canada. A multiyear seedbank study was initiated in fall 2011 to assess annual emergence of seedlings and longevity of seeds of pale swallowwort and black swallowwort at four different burial depths (0, 1, 5, and 10 cm) over 4 yr. One hundred swallowwort seeds were sown in seed pans buried in individual pots, and emerged seedlings were counted and removed from May through September each year. A subset of seed pans was retrieved annually in October, and recovered seeds were counted and tested for viability. The majority of seedling emergence occurred during the first year (92% in 2012), and no new seedlings emerged in the third (2014) or fourth (2015) years. Pale swallowwort had relatively poor emergence at sowing depths of 0 cm (11%), 5 cm (6%), and 10 cm (0.05%—only one seedling), while 37% of pale swallowwort seeds emerged at 1 cm. The larger-seeded black swallowwort was more successful, with two-thirds of all sown seeds emerging at depths of 1 cm (71%) and 5 cm (66%), and 26% emerging at 10 cm. Only 16% of the surface-sown black swallowwort emerged. A large portion of the seeds that germinated at 10 cm, as well as at 5 cm for pale swallowwort, died before reaching the soil surface. Of filled seeds that were recovered in 2012 (black swallowwort at the 0-cm depth), 66% were viable. No viable seeds were recovered after the second growing season. Seeds recovered following the third year had become too deteriorated to accurately assess. Swallowwort seeds do not appear to survive more than 2 yr in the soil, at least in our experiment, suggesting that the elimination of seed production over 3 yr will exhaust the local seedbank. Seeds would need to be buried at least 10 cm for pale swallowwort but more than 10 cm for black swallowwort to prevent seedling emergence. Burial of swallowwort seeds as a management strategy may, however, only be practical in natural areas where high swallowwort densities occur.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Husrev Mennan ◽  
Mathieu Ngouajio

Catchweed bedstraw and wild mustard each produce two populations per year: a winter population (WP) in June, and a summer population (SP) in September. Experiments were conducted to determine whether the WP and SP differ in seed mass and seasonal germination. Seeds of both weeds were buried at 0, 5, 10, and 20 cm in cultivated fields, and retrieved at monthly intervals for 24 mo for germination tests in the laboratory. Additionally, seedling emergence from seeds buried at 0, 5, and 10 cm in the field was evaluated for 1 yr. Seeds from the WP were heavier than those from the SP for both species. Germination of exhumed seeds was affected by burial depth and by seed population. It was highest for seeds that remained on the soil surface and declined with increasing depth of burial. The WP of catchweed bedstraw produced two germination peaks per year, whereas the SP and all populations of wild mustard had only one peak. The WP of both weeds germinated earlier than the SP. Seedling emergence for both species in the field was greater for the WP than for the SP. Increasing soil depth reduced seedling emergence of both the WP and SP of wild mustard and affected only the WP of catchweed bedstraw. We conclude that the WP and SP of catchweed bedstraw and wild mustard seeds used in this study differed in seed mass, seasonal germination, and seedling emergence. The ability of a WP to produce large seeds that germinate early and have two germination peaks per year could make these populations a serious problem in cropping systems.


2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


2002 ◽  
Vol 53 (9) ◽  
pp. 1011 ◽  
Author(s):  
G. B. Taylor ◽  
C. K. Revell

The first (preconditioning) and final stages of seed softening were studied over a 4-year period in 4 lines of yellow serradella (Ornithopus compressus L.): cvv. Santorini and Charano, and accessions GEH72-1A and GRC5045-2-2. Pods grown in 1997 were collected in December (start of summer) and placed on the soil surface or buried at a depth of 1 cm. Measurements of seed softening between years were made from pod samples removed in June each year. The progress of preconditioning and seed softening within the first 3 years was determined from samples taken at the end of February. Numbers of soft and viable seeds were determined from each sampling. Preconditioned seeds were identified by subjecting seeds to 7 gradual diurnal temperature cycles of 48/15°C in darkness before testing for permeability. Seed softening was markedly accelerated by pod burial in all 4 lines, with most buried seeds of GEH72-1A and Santorini softening during the first year. Seed softening was slower in GRC5045-2-2 and Charano, approaching a constant annual rate over the 4 years of the experiment. Despite this marked effect of burial the differences between lines in rates of softening of buried seeds were sufficient to have important implications for persistence under some management systems. Most seeds of all lines softened between February and June, indicating that shallow pod burial could be delayed in these lines until at least the end of February to promote the final stage of seed softening. Although large numbers of seeds of GEH72-1A and GRC5045-2-2 had preconditioned at the soil surface by the end of February, few went on to complete the softening process by June, when most had lost their preconditioned state. Treatment at 48/15°C was less successful in identifying preconditioned seeds of Santorini and Charano. Rates of imbibition differed markedly between lines. Most soft seeds of GEH72-1A and GRC5045-2-2 imbibed within days, whereas they took weeks in Santorini and an intermediate time in Charano. Seedling age distributions in the 4 lines in June closely reflected the times their soft seeds took to imbibe in the laboratory. Imbibition time can be an important germination regulating mechanism having implications that may be either favourable or unfavourable depending on rainfall distribution around the break of season and the system of management.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 533-539 ◽  
Author(s):  
Paul Cowan ◽  
Susan E. Weaver ◽  
Clarence J. Swanton

Field experiments were conducted to determine the influence of time of emergence and density of single and multispecies populations of pigweed and barnyardgrass on soybean yield and competitive abilities of pigweed and barnyardgrass. Pigweed and barnyardgrass were established at selected densities within 12.5 cm on either side of the soybean row. Pigweed and barnyardgrass seeds were sown concurrently with soybean and at the cotyledon stage of soybean growth. Time and density of pigweed and barnyardgrass seedling emergence relative to soybean influenced the magnitude of soybean yield loss. Maximum soybean yield loss ranged from 32 to 99%, depending upon time of emergence relative to soybean. Pigweed was more competitive than barnyardgrass across all locations, years, and time of weed emergence. When pigweed was assigned a competitive index of 1 on a scale from 0 to 1, the competitive ability of barnyardgrass ranged from 0.075 to 0.40 of pigweed, depending upon location and time of emergence. This is the first multiple weed species study to include time of weed emergence relative to the crop. Competitive index values for multiple weed species must be calculated from field experiments in which weeds are grown with the crop under differing environmental conditions.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 521-525 ◽  
Author(s):  
Shouhui Wei ◽  
Chaoxian Zhang ◽  
Xiangju Li ◽  
Hailan Cui ◽  
Hongjuan Huang ◽  
...  

Buffalobur is a noxious and invasive weed species native to North America. The influence of environmental factors on seed germination and seedling emergence of buffalobur were evaluated in laboratory and greenhouse experiments. The germination of buffalobur seeds occurred at temperatures ranging from 12.5 to 45 C, with optimum germination attained between 25 and 35 C. Buffalobur seeds germinated equally well under both a 14-h photoperiod and continuous darkness; however, prolonged light exposure (≥ 16 h) significantly inhibited the seed germination. Buffalobur seed is rather tolerant to low water potential and high salt stress, as germination was 28 and 52% at osmotic potentials of −1.1 MPa and salinity level of 160 mM, respectively. Medium pH has no significant effect on seed germination; germination was greater than 95% over a broad pH range from 3 to 10. Seedling emergence was higher (85%) for seeds buried at a soil depth of 2 cm than for those placed on the soil surface (32%), but no seedlings emerged when burial depth reached 8 cm. Knowledge of germination biology of buffalobur obtained in this study will be useful in predicting the potential distribution area and developing effective management strategies for this species.


2009 ◽  
Vol 23 (4) ◽  
pp. 574-580 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Kenneth L. Smith ◽  
Lawrence E. Steckel ◽  
Clifford H. Koger

Cotton gins in Arkansas, western Tennessee, and western Mississippi were sampled for weed seed contamination of gin trash in fall 2007. A total of 473 samples were collected, with 453 samples from Arkansas. The objectives of this research were to determine the weed species most frequently found in gin trash and determine what means gin operators are using to dispose of gin trash. There were 25 weed species found in the gin trash samples—11 grass and 14 broadleaf weeds. Grass and broadleaf weeds were present in 41.4 and 8.5% of the samples, respectively. The most frequently found species were large crabgrass (19.0%), barnyardgrass (14.0%), goosegrass (12.9%), red sprangletop (8.2%) and Palmer amaranth (4.2%). Viable seeds of barnyardgrass, large crabgrass, Palmer amaranth, and prickly sida were present in the surface layer (0- to 25-cm depth) of gin trash piles after 1 yr of composting. Viable Palmer amaranth seeds were present in the surface layer of gin trash piles after 2 yr of composting, but no germinable seeds were found deeper than 25 cm following 1 yr of composting. Gin trash disposal involved application of the material to crop fields during the fall or winter months; composting followed by application of the compost as mulch or a soil amendment to gardens, flower beds, or crop fields; use as cattle feed; and coverage for landfills to reduce erosion and encourage growth of vegetation. Because of the demonstrated potential for weed seed dispersal via gin trash, including composted material, development of technologies to ensure disposal of a gin-trash product free of viable weed seed are justified.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 876-885 ◽  
Author(s):  
H. R. Huarte ◽  
R. L Benech Arnold

Field experiments were carried out at the Facultad de Agronomía, Universidad de Buenos Aires, Argentina (34°25′S, 58°25′W), to evaluate the possibility of reducing weed seedling emergence through the use of alfalfa cultivars with low levels of winter dormancy and by increasing plant density from 200 to 400 plants m−2. It was hypothesized that these treatments would alter the temperature regime and the red (R)–far-red (FR) ratio of radiation to which seeds were exposed. Responses to management treatments were recorded for bull thistle, cotton thistle, plumeless thistle, tall rocket, mustard, curly dock, and pigweed. During the alfalfa establishment year, pigweed and curly dock emergence was reduced by the nondormant cultivar established at high density. This reduction disappeared when soil beneath the canopy was fitted with heaters that mimicked bare-soil temperatures. Crop canopy presence during the establishment year was not effective in reducing mustard, cotton thistle, bull thistle, plumeless thistle, and tall rocket emergence. During the second and third years after crop establishment, the canopy of the nondormant alfalfa cultivar was effective in reducing germination of weed seeds placed on the soil surface during fall and winter. In contrast, the winter-dormant cultivar allowed the establishment of weeds during the winter period. These reductions in weed emergence were associated with a modification in the R–FR ratio perceived by the seeds located at the soil surface and could largely be removed by using FR filters to increase the R–FR ratio. These results suggest that the selection of a nondormant cultivar combined with an increase in plant density could effectively reduce weed populations in alfalfa.


2004 ◽  
Vol 18 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Michael J. Walsh ◽  
Richard D. Devlin ◽  
Stephen B. Powles

The earliest possible seeding of wheat crops in the southern Australian dryland cropping zone is prevented by the lack of a weed control practice that adequately controls initial weed seedling emergence at the start of the growing season. The objective of this study was to determine the potential for using residual herbicides applied up to 1 mo before the start of the growing season to control rigid ryegrass seedlings that emerge after the season-opening rains. In a series of glasshouse studies, S-metolachlor and propyzamide were found to effectively persist on the soil surface through prolonged exposure to hot, dry, and intense sunlight conditions, preventing the establishment of rigid ryegrass seedlings. In addition, these herbicides caused little or no effect on subsequently seeded wheat. It also was determined that S-metolachlor had the potential to retain efficacy on rigid ryegrass seedlings after 12 wk of exposure on the soil surface to these conditions. These studies have identified two herbicides with the potential for use at the novel application timing, i.e., before the commencement of the growing season, in Mediterranean climates of southern Australia.


Sign in / Sign up

Export Citation Format

Share Document