Understanding mechanisms of reduced annual weed emergence in alfalfa

Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 876-885 ◽  
Author(s):  
H. R. Huarte ◽  
R. L Benech Arnold

Field experiments were carried out at the Facultad de Agronomía, Universidad de Buenos Aires, Argentina (34°25′S, 58°25′W), to evaluate the possibility of reducing weed seedling emergence through the use of alfalfa cultivars with low levels of winter dormancy and by increasing plant density from 200 to 400 plants m−2. It was hypothesized that these treatments would alter the temperature regime and the red (R)–far-red (FR) ratio of radiation to which seeds were exposed. Responses to management treatments were recorded for bull thistle, cotton thistle, plumeless thistle, tall rocket, mustard, curly dock, and pigweed. During the alfalfa establishment year, pigweed and curly dock emergence was reduced by the nondormant cultivar established at high density. This reduction disappeared when soil beneath the canopy was fitted with heaters that mimicked bare-soil temperatures. Crop canopy presence during the establishment year was not effective in reducing mustard, cotton thistle, bull thistle, plumeless thistle, and tall rocket emergence. During the second and third years after crop establishment, the canopy of the nondormant alfalfa cultivar was effective in reducing germination of weed seeds placed on the soil surface during fall and winter. In contrast, the winter-dormant cultivar allowed the establishment of weeds during the winter period. These reductions in weed emergence were associated with a modification in the R–FR ratio perceived by the seeds located at the soil surface and could largely be removed by using FR filters to increase the R–FR ratio. These results suggest that the selection of a nondormant cultivar combined with an increase in plant density could effectively reduce weed populations in alfalfa.

2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


1993 ◽  
Vol 44 (6) ◽  
pp. 1311 ◽  
Author(s):  
GM Lodge ◽  
AJ Schipp

Two experiments examined the effects of sowing time and depth (surface and 10, 25, 50 mm) on emergence of Danthonia richardsonii Cashmore and Danthonia linkii Kunth. Experiment 1 was conducted from January to December 1990 on a loam/sand mixture in boxes. Emergence was highest in both species for seeds sown onto the soil surface in summer and autumn (P < 0.05). Sowing at any depth at any time of the year, or surface sowing in winter and spring, markedly reduced emergence. Experiment 2 was conducted in the field at Tamworth, northern New South Wales from September 1991 to August 1992, on a red brown earth and a black earth. This study confirmed that emergence in both species was highest from surface sown seed. Field emergence was lowest in winter, but in contrast to experiment 1, it was higher in spring, particularly on the black earth. Seedling emergence appeared to be related to mean maximum temperature, decreasing in winter as it declined below 20�C, and increasing in spring when it was greater than 23�C. Differences in seed weight were reflected in emergence of D. richardsonii and D. linkii in experiment 1. Similar emergence was recorded for the loamlsand mixture and sand, indicating that there was little effect of texture. Phalaris aquatica L. cv. Sirosa surface sown in December had lower emergence ( P < 0.05) than both Danthonia spp., but emergence of this larger seeded cultivar was higher at depths of 10 and 25 mm. Laboratory studies to determine reasons for the low emergence of D. richardsonii and D. linkii from depth, indicated that neither had an obligate light requirement for germination. Depth, however, reduced germination (P < 0.05) compared with surface sowing of seed. Seedlings at depth also were observed to have slower rates of shoot and root elongation. In the field, the most successful establishments of D. richardsonii and D. linkii seedlings are likely to occur from surface sowings in April and May. Sowing in spring may also be possible if mean maximum soil temperatures exceed 23�C, and seedlings can establish before the onset of hot, dry conditions in summer.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 533-539 ◽  
Author(s):  
Paul Cowan ◽  
Susan E. Weaver ◽  
Clarence J. Swanton

Field experiments were conducted to determine the influence of time of emergence and density of single and multispecies populations of pigweed and barnyardgrass on soybean yield and competitive abilities of pigweed and barnyardgrass. Pigweed and barnyardgrass were established at selected densities within 12.5 cm on either side of the soybean row. Pigweed and barnyardgrass seeds were sown concurrently with soybean and at the cotyledon stage of soybean growth. Time and density of pigweed and barnyardgrass seedling emergence relative to soybean influenced the magnitude of soybean yield loss. Maximum soybean yield loss ranged from 32 to 99%, depending upon time of emergence relative to soybean. Pigweed was more competitive than barnyardgrass across all locations, years, and time of weed emergence. When pigweed was assigned a competitive index of 1 on a scale from 0 to 1, the competitive ability of barnyardgrass ranged from 0.075 to 0.40 of pigweed, depending upon location and time of emergence. This is the first multiple weed species study to include time of weed emergence relative to the crop. Competitive index values for multiple weed species must be calculated from field experiments in which weeds are grown with the crop under differing environmental conditions.


Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 854-860 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Gurjeet Gill ◽  
Christopher Preston

Annual sowthistle has become more abundant under no-till systems in southern Australia. Increased knowledge of germination biology of annual sowthistle would facilitate development of effective weed control programs. The effects of environmental factors on germination and emergence of annual sowthistle seeds were examined in laboratory and field experiments. Seeds of annual sowthistle were able to germinate over a broad range of temperatures (25/15, 20/12, and 15/9 C day/night temperatures). Seed germination was favored by light; however, some germination occurred in the dark as well. Greater than 90% of seeds germinated at a low level of salinity (40 mM NaCl), and some seeds germinated even at 160 mM NaCl (7.5%). Germination decreased from 95% to 11% as osmotic potential increased from 0 to −0.6 MPa and was completely inhibited at osmotic potential greater than −0.6 MPa. Seed germination was greater than 90% over a pH range of 5 to 8, but declined to 77% at pH 10. Seedling emergence was the greatest (77%) for seeds present on the soil surface but declined with depth, and no seedlings emerged from a soil depth of 5 cm. In another experiment in which seeds were after-ripened at different depths in a field, seed decay was greater on the soil surface than at 2 or 5 cm depth. At the end of the growing season, there was a much greater persistence of buried seed (32 to 42%) than seeds present on the soil surface (8%). Greater persistence of buried seed could be due to dormancy enforced by dark in this species.


1974 ◽  
Vol 83 (1) ◽  
pp. 125-133 ◽  
Author(s):  
P. C. Longden ◽  
R. K. Scott ◽  
D. W. Wood

SUMMARYFrom monogerm sugar-beet seed as harvested non-viable fruits have to be eliminated, multigerm ones rejected and the size made sufficiently uniform for use in precision drills. Seed which had been gently rubbed to remove some of the cortex was graded for diameter, thickness and by aspiration, either singly or in combination. Effects of grading were determined by laboratory germination tests, radiography and field sowings in which seedling emergence and crop growth and yield were recorded.Grading by thickness was effective in removing multigerm fruits. Grading by aspiration and diameter rejected non-viable seed and reduced the variation in size. By combining all three grading methods, samples of seed of 80% germination and 90% monogermity were produced, provided the seed lot as threshed gave at least 50% germination. True seed weight increased with fruit diameter but only the first aspiration was effective in removing light true seeds. Radiography showed that both aspiration and, to a less extent, grading by diameter were effective in removing most empty fruits but neither eliminated those with shrivelled seed. The field experiments confirmed that increase in fruit diameter or aspiration gave more seedlings. Even at uniform, high plant density, sugar yields were less from the smallest (less than 3 mm diameter) than from the other grades of seed. The initial aspiration also improved sugar yield but further aspiration decreased yield.


2008 ◽  
Vol 9 (5) ◽  
pp. 936-950 ◽  
Author(s):  
Tushar Sinha ◽  
Keith A. Cherkauer

Abstract Seasonal cycles of freezing and thawing influence surface energy and water cycle fluxes. Specifically, soil frost can lead to the reduction in infiltration and an increase in runoff response, resulting in a greater potential for soil erosion. An increase in the number of soil freeze–thaw cycles may reduce soil compaction, which could affect various hydrologic processes. In this study, the authors test for the presence of significant trends in soil freeze–thaw cycles and soil temperatures at several depths and compare these with other climatic variables including air temperature, snowfall, snow cover, and precipitation. Data for the study were obtained for three research stations located in northern, central, and southern Indiana that have collected soil temperature observations since 1966. After screening for significant autocorrelations, testing for trends is conducted at a significance level of 5% using Mann–Kendall’s test. Observations from 1967 to 2006 indicate that air temperatures during the cold season are increasing at all three locations, but there is no significant change in seasonal and annual average precipitation. At the central and southern Indiana sites, soil temperatures are generally warming under a bare soil surface, with significant reductions in the number of days with soil frost and freeze–thaw cycles for some depths. Meanwhile, 5-cm soils at the northernmost site are experiencing significant decreases in cold season temperatures, as an observed decrease in annual snowfall at the site is counteracting the increase in air temperature. Seasonal mean maximum soil temperatures under grass cover are increasing at the southernmost site; however, at the central site, it appears that seasonal minimum soil temperatures are decreasing and the number of freeze–thaw cycles is increasing.


2010 ◽  
Vol 58 (7) ◽  
pp. 539 ◽  
Author(s):  
Victor M. Santana ◽  
Ross A. Bradstock ◽  
Mark K. J. Ooi ◽  
Andrew J. Denham ◽  
Tony D. Auld ◽  
...  

In addition to direct fire cues such as heat, smoke and charred wood, the passage of fire leads indirectly to changes in environmental conditions which may be able to break physical dormancy in hard-coated seeds. After a fire, the open canopy and the burnt material lying on the surface alter the thermal properties of the soil, resulting in elevated soil temperatures for long periods of time. We simulated daily temperature regimes experienced at different depths of soil profile after a summer fire. Our aim was to determine whether these temperature regimes and the duration of exposure (5, 15 and 30 days) play an important role breaking physical seed dormancy in six legumes from south-eastern Australia. Our results showed that simulated temperature regimes break seed dormancy. This effect is specially pronounced at temperatures that are expected to occur near the soil surface (0–2 cm depth). The duration of exposure interacts with temperature to break dormancy, with the highest germination rates reached after the longest duration and highest temperatures. However, the germination response varied among species. Therefore, this indirect post-fire cue could play a role in the regeneration of plant communities, and could stimulate seedling emergence independent of direct fire cues as well as in interaction with direct cues.


HortScience ◽  
1992 ◽  
Vol 27 (5) ◽  
pp. 409-410 ◽  
Author(s):  
Glen A. Murray ◽  
Jerry B. Swensen ◽  
Gary Beaver

The effect of osmotic priming on onion (Allium cepa L.) seedling emergence was evaluated in the field and in a controlled environment at 15C. Seeds of onion cultivars Bronze Wonder, Challenger, Big Mac, and White Keeper were primed in a solution of 300 g polyethylene glycol 8000/liter for 7 days at 10C 1 to 2 weeks before being planted in Spring 1986 and Summer 1987. Time to 50% of maximum emergence (T) for seedlings from primed seeds averaged 10% to 12% less than for unprimed seeds in both seasons and in laboratory experiments. Maximum emergence was improved 7% by priming in one spring field experiment but not in the summer field experiments or in the laboratory. Differences in T among cultivars in the 1986 experiments were small and significant only in one laboratory experiment. In 1987, cultivar differences in T were significant but not consistent in all experiments. Cultivar T means from laboratory experiments were significantly (P = 0.05) correlated with those for field emergence in three of four experiments, but coefficients were low (r = 0.37 to r = 0.45). Values for maximum emergence in the laboratory were not correlated with maximum emergence in the field. Laboratory emergence tests at 15C were a poor predictor of field emergence. Seed priming may benefit establishment of spring-seeded onions emerging at soil temperatures ≤ 15C more than summer-seeded onions emerging in soils >24C.


Weed Science ◽  
1978 ◽  
Vol 26 (3) ◽  
pp. 249-251 ◽  
Author(s):  
G. H. Egley ◽  
R. D. Williams

Glyphosate [N-(phosphonomethyl)glycine] (30, 125, 250 mg/L) in petri dishes had no effect on germination of prickly sida(Sida spinosaL.), velvetleaf(Abutilon theophrastiMedic), barnyardgrass [Echinocloa crus-galli(L.) Beauv.] and johnsongrass [Sorghum halepense(L.) Pers.] seeds, but additional experimentation indicated that glyphosate stimulated germination of redroot pigweed(Amaranthus retroflexusL.) seeds. Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) (30, 125, 250 mg/L) did not affect germination of the three broadleaf species, but inhibited johnsongrass and barnyardgrass germination. In the greenhouse, soil surface applications of glyphosate (1.1, 2.2, 9.0 kg/ha) did not significantly affect emergence of these five weed species when they were on or beneath the soil surface at time of treatment. Paraquat (same rates) did not affect broadleaf weed emergence but some rates inhibited grass weed emergence when the seeds were treated while on the soil surface. It is unlikely that normal field use rates of glyphosate will influence weed emergence; whereas paraquat may inhibit the emergence of some grass weeds if the herbicide contacts seeds on the soil surface.


2009 ◽  
Vol 35 (5) ◽  
pp. 232-240
Author(s):  
Michael Arnold ◽  
Garry McDonald

Three experiments investigated the effects of various groundcovers on establishment of redbuds [Cercis canadensis L. var. texensis (S. Watson) M. Hopkins ‘Alba’] and baldcypress [Taxodium distichum (L.) Rich.]. The first experiment involved eight surface treatments. Controls were bare soil. Remaining treatments were pine bark mulch; Asian jasmine [Trachelospermum asiaticum (Siebold & Zucc.) Nakai]; St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze]; decorative gravel; recycled paper mulch; decorative brick pavers; or seasonal rotations of herbaceous annuals. Other experiments compared brick-on-sand treatments ranging in color from light blonde to dark charcoal with bare soil on establishment of redbuds or baldcypress. Most organic and living soil surface covers were preferable to bare soils, however, some inorganic surface covers were detrimental to tree growth. Paving surfaces adversely affected survival, shoot or root growth, but differences were species dependent. Soil moisture, pH, and bulk density did not appear to be limiting under pavers, but substantial seasonal fluctuations in soil temperatures were observed. Light and medium bricks reflected more photosynthetically active radiation than dark bricks or bare soil. Atmospheric temperatures were greatest above dark and medium bricks. Root growth decreased as darkness of brick color increased. Redbud survival and growth were more adversely affected than with baldcypress


Sign in / Sign up

Export Citation Format

Share Document