Shattercane (Sorghum bicolor) Interference in Soybean (Glycine max)

Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Gary M. Fellows ◽  
Fred W. Roeth

Shattercane interference in irrigated soybean was evaluated during 1987, 1988, and 1989 at Clay Center, NE, using ‘Rox’ forage sorghum to simulate shattercane. Soybean yield reduction did not occur if shattercane was removed by 2 wk after emergence in 1987 and 6 wk after emergence in 1988 and 1989. Shattercane interference with soybean began when shattercane height exceeded soybean height. Soybean yield was reduced up to 25% before the height differential reached 30 cm, the minimum difference required for selectively applying glyphosate with a wiper applicator. Soybean nodes per stem, pods per stem, and beans per pod decreased as duration of interference increased. A direct relationship between soybean yield loss and shattercane density fit a rectangular hyperbolic function. Yield loss per shattercane plant was highest at low shattercane densities. Soybean plant height, biomass, nodes per stem, pods per stem, pods per node, and beans per pod decreased as shattercane density increased. An interference model for estimation of soybean yield and economic loss based on shattercane density was developed.

1993 ◽  
Vol 7 (1) ◽  
pp. 220-225 ◽  
Author(s):  
Gordon D. Vail ◽  
Lawrence R. Oliver

A 2-yr field experiment was conducted at Fayetteville and Stuttgart, AR, to predict soybean yield loss as a function of barnyardgrass density and total dry weight. Predicted soybean yield reductions were 0 to 78% for original densities of 1 to 500 barnyardgrass plants per m of row. Soybean yield reductions were linear from 0 to 150 barnyardgrass plants per m of row with an average yield reduction of 0.25% for each plant per m of row. Soybean yield was reduced 10, 25, and 50% from original barnyardgrass densities of 42, 110, and 250 plants m of row. Predictions of soybean yield reduction from barnyardgrass dry weight and original density were similar. traspecific interference of barnyardgrass occurred for all variables tested, with individual barnyardgrass plants becoming less competitive as density increased.


2017 ◽  
Vol 32 (2) ◽  
pp. 135-140 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

AbstractTo address recent concerns related to auxin herbicide drift onto soybean, a study was developed to understand the susceptibility of the reproductive stage of soybean to a new auxin herbicide compared with dicamba. Florpyrauxifen-benzyl is under development as the second herbicide in a new structural class of synthetic auxins, the arylpicolinates. Field studies were conducted to (1) evaluate and compare reproductive soybean injury and yield following applications of florpyrauxifen-benzyl or dicamba across various concentrations and reproductive growth stages and (2) determine whether low-rate applications of florpyrauxifen-benzyl or dicamba to soybean in reproductive stages would have similar effect on the progeny of the affected plants. Soybean were treated with 0, 1/20, or 1/160, of the 1X rate of florpyrauxifen-benzyl (30 g ai ha−1) or dicamba (560 g ae ha−1) at R1, R2, R3, R4, or R5 growth stage. Soybean plant height and yield was reduced from 1/20X dicamba across all reproductive stages. High drift rates (1/20X) of florpyrauxifen-benzyl also reduced soybean plant height >25% and yield across R1 to R4 stages. Germination, stand, plant height, and yield of the offspring of soybean plants treated with dicamba and florpyrauxifen-benzyl were significantly affected. Dicamba applied at a rate of 1/20X at R4 and R5 resulted in 20% and 35% yield reduction for the offspring, respectively. A similar reduction occurred from florpyrauxifen-benzyl applied at R4 and R5 at the 1/20X rate, resulting in 15% to 24% yield reduction for the offspring, respectively. Based on these findings, it is suggested that growers use caution when applying these herbicides in the vicinity of reproductive soybean.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 16-19 ◽  
Author(s):  
L. M. Wax

Delayed planting or “stale seedbed” for weed control in close-drilled (20-cm rows) soybeans [Glycine max(L.) Merr. ‘Amsoy’] was evaluated for 3 years. The system combined final seedbed preparation 3 to 6 weeks before planting with herbicide application at planting time. The best control of six weed species and highest soybean yields were obtained bya,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) application at the time of seedbed preparation followed by 3-(3,4-dichlorophenyl)-1-methylurea (linuron) application at planting and by linuron application at planting without the early trifluralin application. Applications of 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat) at planting, either with or without trifluralin treatments, resulted in less weed control and lower soybean yields than comparable treatments with linuron. However, even the best treatments failed to provide the weed control necessary to prevent substantial soybean yield reduction in heavy infestations of weeds that emerge in large numbers after planting, and that resist the phytotoxic action of the herbicides.


Weed Science ◽  
1987 ◽  
Vol 35 (6) ◽  
pp. 784-791 ◽  
Author(s):  
Peter H. Sikkema ◽  
Jack Dekker

Field experiments were conducted during 1981 and 1982 in Ontario, Canada, on the effects of quackgrass [Agropyron repens(L.) Beauv. # AGRRE] interference in soybean [Glycine max(L.) Merr.] and the usefulness of infrared thermometry in predicting critical periods of weed interference. Soybean seed yield, dry weight, number of leaves, height, and number of pods were substantially reduced due to quackgrass interference. High levels of P and K fertility did not overcome the quackgrass interference. Part of the competitive effects of quackgrass was alleviated by irrigation. Infrared thermometry successfully detected the first occurrence of quackgrass-induced stress during the early soybean flowering stage, when the quackgrass was in the four-leaf gtowth stage. This coincided with the onset of the first significant soybean yield loss. No additional soybean yield loss occurred after quackgrass reached the five-leaf growth stage. There was an inverse relation between accumulated stress degree days and soybean yield reductions due to quackgrass interference. The use of the stress degree day concept may be a valuable tool in predicting soybean yield losses due to quackgrass interference.


Weed Science ◽  
1972 ◽  
Vol 20 (5) ◽  
pp. 502-506 ◽  
Author(s):  
R. S. Moomaw ◽  
L. R. Robison

The herbicide 3-amino-2,5-dichlorobenzoic acid (chloramben) was applied preemergence to soybeans [Glycine max(L.) Merr.] in 1969, 1970, and 1971. Herbicide band widths were 18, 36, and 53 cm, and there was a broadcast treatment. Cultivation and rotary hoeing were also imposed on the herbicide band widths as variables. A 36-cm band of chloramben was the minimum band width used which consistently maintained soybean yield when supplemented with mechanical tillage. Broadcast treated soybeans without mechanical tillage yielded as well as handweeded soybeans in 2 of 3 years. Each 4 kg/ha of weed growth reduced soybean yield 1 kg/ha. Average weed yield reduction due to cultivation was 100, 76, and 54% in 1969, 1970, and 1971, respectively, when average weed yields were 360, 1650, and 4720 kg/ha in successive years. Rotary hoeing reduced weed growth 48% and increased soybean yield 20% in 1970 but did not significantly affect weed or soybean yields in 1969 and 1971.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 523-527 ◽  
Author(s):  
Tracy E. Klingaman ◽  
Lawrence R. Oliver

A 2-yr field study was conducted at Fayetteville, AR, to determine the effect of Palmer amaranth interference on soybean growth and yield. Palmer amaranth density had little effect on soybean height, but soybean canopy width ranged from 77 cm in the weed-free check to 35 cm in plots with 10 plants m–1of row 12 wk after emergence. Soybean yield reduction was highly correlated to Palmer amaranth biomass at 8 wk after emergence and maturity, soybean biomass at 8 wk after emergence, and Palmer amaranth density. Soybean yield reduction was 17, 27, 32, 48, 64, and 68%, respectively, for Palmer amaranth densities of 033, 0.66, 1, 2, 333, and 10 plants m–1of row. Soybean yield reduction and Palmer amaranth biomass were linear to approximately 2 Palmer amaranth m–1of row, suggesting intraspecific interference between adjacent Palmer amaranth is initiated at Palmer amaranth densities between 2 and 3.33 plants m–1of row.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Ronald C. Cordes ◽  
Thomas T. Bauman

Detrimental effects on growth and yield of soybeans [Glycine max(L.) Merr. ‘Amsoy 77′] from density and duration of competition by ivyleaf morningglory [Ipomea hederacea(L.) Jacq. ♯3IPOHE] was evaluated in 1981 and 1982 near West Lafayette, IN. Ivyleaf morningglory was planted at densities of 1 plant per 90, 60, 30, and 15 cm of row in 1981 and 1 plant per 60, 30, 15, and 7.5 cm of row in 1982. Each density of ivyleaf morningglory competed for 22 to 46 days after emergence and the full season in 1981, and for 29 to 60 days after emergence and the full season in 1982. The best indicators of competition effects were leaf area index, plant dry weight, and yield of soybeans. Ivyleaf morningglory was more competitive during the reproductive stage of soybean growth. Photosynthetic irradiance and soil moisture measurements indicated that ivyleaf morningglory does not effectively compete for light or soil moisture. All densities of ivyleaf morningglory could compete with soybeans for 46 and 60 days after emergence in 1981 and 1982, respectively, without reducing soybean yield. Full-season competition from densities of 1 ivyleaf morningglory plant per 15 cm of row significantly reduced soybean yield by 36% in 1981 and 13% in 1982. The magnitude of soybean growth and yield reduction caused by a given density of ivyleaf morningglory was greater when warm, early season temperatures favored rapid weed development.


2015 ◽  
Vol 95 (4) ◽  
pp. 719-726 ◽  
Author(s):  
Kimberly D. Belfry ◽  
Nader Soltani ◽  
Lynette R. Brown ◽  
Peter H. Sikkema

Belfry, K. D., Soltani, N., Brown, L. R. and Sikkema, P. H. 2015. Tolerance of identity preserved soybean cultivars to preemergence herbicides. Can. J. Plant Sci. 95: 719–726. Six field trials were conducted over a 3-yr period (2011 to 2013) near Exeter and Ridgetown, Ontario, Canada, to assess the tolerance of seven identity-preserved (IP) soybean cultivars to preemergence (PRE) herbicides applied at 2×the recommended dose. All cultivars demonstrated excellent tolerance to dimethenamid-P, pyroxasulfone, S-metolachlor, chlorimuron-ethyl, clomazone, cloransulam-methyl, flumetsulam and imazethapyr, showing 5% or less injury. At Exeter, linuron caused as much as 13 and 18% injury at 2 and 4 wk after soybean emergence, while injury due to metribuzin was as high as 22 and 47% for the same dates, respectively. At Exeter, linuron, metribuzin and S-metolachlor plus metribuzin reduced soybean height up to 17, 41 and 24%, respectively; soybean height was generally not affected at the Ridgetown sites. At Exeter, metribuzin reduced soybean yield up to 38% for cultivars S03W4, Madison and OAC Lakeview, while S23T5 was not significantly reduced. On the contrary, metribuzin yield loss at Ridgetown was nonsignificant. Results from this study suggest that PRE application of metribuzin at 2× field dose has potential to cause unacceptable injury and yield reduction in IP soybeans under some soil and climatic conditions and may vary according to cultivar.


1987 ◽  
Vol 27 (6) ◽  
pp. 897 ◽  
Author(s):  
LW Banks ◽  
AL Bernardi

The mainstem apex was removed from indeterminate soybeans (Glycine max, varieties Chaffey and Farrer) in the field over 3 years to estimate their ability to recover from damage to terminal buds by foliage feeding and stem boring pests. In years 1 and 2, the growing tip was plucked off the main stem of 50 or 100% of plants (variety Chaffey) early in vegetative growth (V2), at the beginning of flowering (Fl), at full flowering (F100) or at the end of flowering (EF100) as single treatments. In year 3, tips were removed from 20, 33 or 50% ofplants (variety Farrer) at V3, F1 or F100 as single treatments or as repeated treatments starting at those times and repeated twice at weekly intervals thereafter. Tip removal at V2 or V3 delayed flowering (F50) and pod set (R3) by up to 10 days but did not delay maturity (P95), whereas tip removal at EF100 hastened P95 by 5-8 days. Damage during flowering did not affect phenological development. Indeterminate soybeans have the ability to compensate vegetatively for damage to the mainstem apex. Tip removal at V2, F1 or F100 significantly reduced the number of nodes on the main stem, increased branching and did not reduce the total number of nodes per plant at maturity. Tip removal at V2 increased the number of nodes per plant by increasing the number of nodes per branch. Repeated tip removal prior to flowering and single or repeated treatments during flowering reduced final plant height. Tip removal from all plants reduced yield by around 10% irrespective of the time of damage. Fifty per cent damage prior to flowering or after full flowering did not affect yield but, at the beginning of flowering, removal of tips from as few as 20% of plants reduced yield by at least 10%. The most severe yield reduction was 24% following repeated tip removal from 50% of plants starting at V3. Repeated damage to 50% of plants starting at F1 reduced yield by 18%. Seed size was not affected by any treatment. We conclude that pests in indeterminate soybean crops should be controlled if they have removed the growing tip from the main stem of 50% of plants before flowering or 20% of plants at the start of flowering and are continuing to cause damage.


2017 ◽  
Vol 18 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Tom W. Allen ◽  
Carl A. Bradley ◽  
Adam J. Sisson ◽  
Emmanuel Byamukama ◽  
Martin I. Chilvers ◽  
...  

Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.


Sign in / Sign up

Export Citation Format

Share Document