Use of the Recirculating Sprayer to Control Tall Weed Escapes in Crops

Weed Science ◽  
1981 ◽  
Vol 29 (2) ◽  
pp. 174-179 ◽  
Author(s):  
D. R. Carlson ◽  
O. C. Burnside

Field experiments were conducted with the recirculating sprayer (RCS) at Lincoln, Nebraska from 1974 through 1978. Different spray pressures, spray nozzles, and spray volumes with the RCS showed no significant differences in shattercane [Sorghum bicolor(L.) Moench] control or soybean [Glycine max(L.) Merr.] injury when herbicides were applied at three stages of weed growth. When shattercane was treated in a grain sorghum [Sorghum bicolor(L.) Moench] field, poor weed control and excessive crop injury occurred during treatment at the early growth stage as compared with treatments applied 2 weeks later. The final treatment date gave selective weed control in grain sorghum, but many of the shattercane heads had already developed viable seed. A weed-to-crop height differential of at least 45 cm resulted in maximum weed control with minimum crop injury. Common milkweed (Asclepias syriacaL.) control in soybeans varied considerably, but treatments giving over 80% control were glyphosate [N-(phosphonomethyl)glycine] at 1.1 to 4.5 kg/ha applied through the RCS. Other herbicides were less effective. Volunteer corn (Zea maysL.) was controlled selectively at 75 to 100% in soybeans with glyphosate or paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) when applied through the RCS. Shattercane was controlled 95 to 100% in soybeans with glyphosate at 3.4 kg/ha. Unless spray drift and splash can be prevented when using the RCS, glyphosate and paraquat will not give selective control when applied to weeds growing in grain sorghum. Glyphosate applied through the RCS, however, can be a selective method of controlling weed escapes in soybeans because soybeans are not as sensitive to glyphosate as is sorghum.

Weed Science ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Gregory L. Schneider ◽  
Curt B. Koehler ◽  
James S. Schepers ◽  
Orvin C. Burnside

Greenhouse and field experiments were conducted with a roller applicator at Lincoln, Nebraska, during 1979 and 1980. Glyphosate [N-(phosphonomethyl)glycine] concentrations of 5, 10, and 20% and carpet saturations of 50 and 75% controlled shattercane [Sorghum bicolor(L.) Moench] when applied to the top 30 cm of the plant in greenhouse research. In the field, glyphosate concentrations of 5 to 20% with a carpet saturation of 50% controlled shattercane acceptably in soybeans [Glycine max(L.) Merr.], but a concentration of 2.5% with 25% carpet saturation did not. Weed control was comparable whether speed of application was 3.2, 6.4, or 9.6 km/h. Shattercane control in grain sorghum [Sorghum bicolor(L.) Moench.] was excellent at glyphosate concentrations of 5, 10, and 20% and at carpet saturations of 50 and 75%, and sorghum injury was minimal at 25 and 50% carpet saturations. The roller applicator was compared to a ropewick applicator for shattercane control in sorghum. Excellent weed control (90% or greater) with minimal crop injury was obtained with the roller applicator at glyphosate concentrations of 10 and 20% at application speeds of 3.2 and 6.4 km/h and with the ropewick applicator with glyphosate concentrations of 35 and 50% applied at 3.2, 6.4, and 9.6 km/h.


1990 ◽  
Vol 4 (4) ◽  
pp. 886-891 ◽  
Author(s):  
Chester L. Foy ◽  
Harold L. Witt

Alachlor at 3.4 and 6.7 kg ha-1, metolachlor at 2.8 and 5.6 kg ha-1, and propachlor at 4.5 and 9.0 kg ha-1were applied to grain sorghum in field experiments conducted in 1981 and 1982. ‘Dekalb E-59’ and ‘Pioneer 8311’ grain sorghum were tested with and without the seed protectants cyometrinil and flurazole in both experiments. ‘Funk's G-1350’ was tested with and without cyometrinil and CGA-92194 in one experiment. Alachlor and metolachlor caused serious injury (stunting and, in some instances, reductions in stand and yield) to grain sorghum without the seed protectants. Less severe injury to grain sorghum occurred with alachlor and metolachlor at high rates even in the presence of the seed protectants. The three seed protectants were equally effective in preventing crop injury. Only minor injury to grain sorghum, with or without the seed protectants, occurred with propachlor at both rates. Overall, early-season weed control was 81 to 100%; however, propachlor at the rates tested was noticeably weaker than alachlor and metolachlor against some annual grasses.


1989 ◽  
Vol 3 (4) ◽  
pp. 621-626 ◽  
Author(s):  
David L. Regehr ◽  
Keith A. Janssen

Research in Kansas from 1983 to 1986 evaluated early preplant (30 to 45 days) and late preplant (10 to 14 days) herbicide treatments for weed control before ridge-till planting in a soybean and sorghum rotation. Control of fall panicum and common lambsquarters at planting time averaged at least 95% for all early preplant and 92% for late preplant treatments. Where no preplant treatment was used, heavy weed growth in spring delayed soil dry-down, which resulted in poor ridge-till planting conditions and reduced plant stands, and ultimately reduced sorghum grain yields by 24% and soybean yields by 12%. Horsenettle population declined significantly, and honeyvine milkweed population increased. Smooth groundcherry populations fluctuated from year to year with no overall change.


1997 ◽  
Vol 11 (2) ◽  
pp. 354-362 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
James L. Griffin ◽  
Patrick A. Clay ◽  
P. Roy Vidrine ◽  
...  

Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.


2005 ◽  
Vol 19 (2) ◽  
pp. 385-390 ◽  
Author(s):  
Enrique Rosales-Robles ◽  
Ricardo Sanchez-de-la-Cruz ◽  
Jaime Salinas-Garcia ◽  
Victor Pecina-Quintero

2,4-D is the most widely used herbicide for weed control in grain sorghum in northern Tamaulipas, Mexico. Crop injury caused by 2,4-D drift to nontarget crops commonly occurs because of prevailing high winds. Field experiments were conducted from 2001 to 2003 to evaluate an integrated weed management program in grain sorghum with alternative postemergence herbicides to 2,4-D at registered and reduced rates. Bromoxynil applied at 480 (registered rate), 360, and 240 g/ha provided excellent broadleaf weed control when adequate rainfall occurred. Prosulfuron at 14.2 g/ha applied broadcast without cultivation provided excellent weed control and sorghum yield comparable with 28.5 g/ha (registered rate). This treatment represented a 32% cost reduction and 50% reduction in herbicide input compared with prosulfuron applied at registered rate without cultivation, and 31% cost reduction compared with 2,4-D at the registered rate (590 g ae/ha) plus cultivation, considered the commercial standard.


2018 ◽  
Vol 32 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Zachary D. Lancaster ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

AbstractField experiments were conducted in 2014 and 2015 in Fayetteville, Arkansas, to evaluate the residual activity of acetyl-CoA carboxylase (ACCase)–inhibiting herbicides for monocot crop injury and weed control. Conventional rice, quizalofop-resistant rice, grain sorghum, and corn crops were evaluated for tolerance to soil applications of six herbicides (quizalofop at 80 and 160 g ai ha–1, clethodim at 68 and 136 g ai ha–1, fenoxaprop at 122 g ai ha–1, cyhalofop at 313 g ai ha–1, fluazifop at 210 and 420 g ai ha–1, and sethoxydim at 140 and 280 g ai ha–1). Overhead sprinkler irrigation of 1.3 cm was applied immediately after treatment to half of the plots, and the crops planted into the treated plots at 0, 7, and 14 d after herbicide treatment. In 2014, injury from herbicide treatments increased with activation for all crops evaluated, except for quizalofop-resistant rice. At 14 d after treatment (DAT) in 2014, corn and grain sorghum were injured 19% and 20%, respectively, from the higher rate of sethoxydim with irrigation activation averaged over plant-back dates. Conventional rice was injured 13% by the higher rate of fluazifop in 2014. Quizalofop-resistant rice was injured no more than 4% by any of the graminicides evaluated in either year. In 2015, a rainfall event occurred within 24 h of initiating the experiment; thus, there were no differences between activation via irrigation or by rainfall. However, as in 2014, grain sorghum and corn were injured 16% and 13%, respectively, by the higher rate of sethoxydim, averaged over plant-back dates. All herbicides provided little residual control of grass weeds, mainly broadleaf signalgrass and barnyardgrass. These findings indicate the need to continue allowing a plant-back interval to rice following a graminicide application, unless quizalofop-resistant rice is to be planted. The plant-back interval will vary by graminicide and the amount of moisture received following the application.


1993 ◽  
Vol 7 (3) ◽  
pp. 645-649 ◽  
Author(s):  
David L. Jordan ◽  
David H. Johnson ◽  
William G. Johnson ◽  
J. Andrew Kendig ◽  
Robert E. Frans ◽  
...  

Field experiments were conducted to determine carryover potential to grain sorghum and soybean of DPX-PE350 applied POST at 0.05, 0.1, and 0.2 kg ai ha−1to cotton the previous year. DPX-PE350 did not injure soybean or affect yield adversely. Grain sorghum was injured and maturity delayed on a Sharkey silty clay but not on a Calloway silt loam. Grain sorghum yield was reduced on both soils 16 and 22%, respectively, by residues from the 0.1 and 0.2 kg ha−1rates of DPX-PE350. In an incubation study, dissipation of DPX-PE350 was greater at 35 C than at 5 C., and did not differ between the two soils.


Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 460-467 ◽  
Author(s):  
Russell S. Moomaw ◽  
Alex R. Martin

Season-long weed control has been a goal of some producers of irrigated corn (Zea maysL.) to reduce competition, lessen weed seed production, facilitate crop harvest, improve water efficiency (particularly with furrow irrigation), and improve aesthetic properties of fields. Field experiments were conducted for 3 yr on sprinkler-irrigated corn on a loamy fine sand. Five herbicides applied at layby generally provided season-long control of grass weeds and reduced weed seed production up to 100%. Pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] was particularly effective. Yields of irrigated corn were not increased by layby herbicide application. Use of corn rows spaced 91 cm apart and use of a shorter, early-maturing, horizontal-leaf corn cultivar resulted in greater weed growth and weed seed production than did use of 76-cm rows and a taller, full-season, upright-leaf corn cultivar. After nearly complete weed control with herbicides for 2 yr, withholding herbicide use in the third year allowed weed growth which reduced corn yield. Indications were that weed control efforts need to be continuous in irrigated corn production.


2020 ◽  
Vol 34 (5) ◽  
pp. 699-703
Author(s):  
Jason K. Norsworthy ◽  
Jacob Richburg ◽  
Tom Barber ◽  
Trenton L. Roberts ◽  
Edward Gbur

AbstractAtrazine offers growers a reliable option to control a broad spectrum of weeds in grain sorghum production systems when applied PRE or POST. However, because of the extensive use of atrazine in grain sorghum and corn, it has been found in groundwater in the United States. Given this issue, field experiments were conducted in 2017 and 2018 in Fayetteville and Marianna, Arkansas, to explore the tolerance of grain sorghum to applications of assorted photosystem II (PSII)-inhibiting herbicides in combination with S-metolachlor (PRE and POST) or mesotrione (POST only) as atrazine replacements. All experiments were designed as a factorial, randomized complete block; the two factors were (1) PSII herbicide and (2) the herbicide added to create the mixture. The PSII herbicides were prometryn, ametryn, simazine, fluometuron, metribuzin, linuron, diuron, atrazine, and propazine. The second factor consisted of either no additional herbicide, S-metolachlor, or mesotrione; however, mesotrione was excluded in the PRE experiments. Crop injury estimates, height, and yield data were collected or calculated in both studies. In the PRE study, injury was less than 10% for all treatments except those containing simazine, which caused 11% injury 28 d after application (DAA). Averaged over PSII herbicide, S-metolachlor–containing treatments caused 7% injury at 14 and 28 DAA. Grain sorghum in atrazine-containing treatments yielded 97% of the nontreated. Grain sorghum receiving other herbicide treatments had significant yield loss due to crop injury, compared with atrazine-containing treatments. In the POST study, ametryn- and prometryn-containing treatments were more injurious than all other treatments 14 DAA. Grain sorghum yield in all POST treatments was comparable to atrazine, except prometryn plus mesotrione, which was 65% of the nontreated. More herbicides should be evaluated to find a comparable fit to atrazine when applied PRE in grain sorghum. However, when applied POST, diuron, fluometuron, linuron, metribuzin, propazine, and simazine have some potential to replace atrazine in terms of crop tolerance and should be further tested as part of a weed control program across a greater range of environments.


1982 ◽  
Vol 22 (117) ◽  
pp. 310 ◽  
Author(s):  
JF Holland ◽  
DW McNamara

Six experiments were done in northern New South Wales over three seasons to study the effect of weeds on the yield of dry-land grain sorghum and methods of weed control. The relation between crop row spacing and weed control by inter-row cultivation or atrazine (2-chloro-4-ethylamino- 6-isopropylamino-l,3,5-triazine), or both was studied. Where the site yield was high because of favourable growing conditions, an increase in the crop row spacing reduced yield. At low yielding sites, an increase in the row spacing increased yields. At most sites, weed growth was greater with wider row spacings, which resulted in a larger reduction in crop yield where weeds were not removed. Inter-row cultivation reduced weed growth to less than half that of the unweeded controls. Pre-emergent atrazine gave good weed suppression, generally reducing weed growth to less than 10% of the unweeded control when applied at 2.5 kg/ha active ingredient. Post-emergent atrazine was much less effective. Inter-row cultivation combined with a band of pre-emergent atrazine over the crop row was as effective in weed control as an overall spray of pre-emergent atrazine.


Sign in / Sign up

Export Citation Format

Share Document