Shade Development Effects on Pitted Morningglory (Ipomoea lacunosa) Interference with Soybeans (Glycine max)

Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 711-717 ◽  
Author(s):  
Edward C. Murdock ◽  
Philip A. Banks ◽  
Joe E. Toler

‘Ransom’, ‘Govan’, and ‘Bragg’ soybeans [Glycine max(L.) Merr.] were seeded in 30-, 61-, and 91-cm row spacings to achieve a uniform population of 323 000 plants/ha. In 1979 and 1980, shade development within the row was similar for all row spacings, but 15 cm from the row the inflection point occurred earlier when soybeans were seeded at the 30-cm row spacing. In 1979, shading 30 cm from the row was similar with the 61- and 91-cm row spacings, but in 1980 the 61-cm row spacing provided earlier shading. Shading within the row and 15 and 30 cm from the row was similar for all cultivars in 1979, but Govan and Bragg shaded row middles earlier than Ransom at the 91-cm row spacing. In 1980, shade development in the row was similar for all cultivars, but delayed shading was observed between the rows with Ransom. In 1979, maximum soybean seed yields were produced with 2, 2, and 0 weed-free weeks at the 30-, 61-, and 91-cm row spacings, respectively. In 1980, 2 weed-free weeks prevented soybean seed yield reductions at all row spacings. In 1979, Ransom, Bragg, and Govan required 4, 2, and 0 weed-free weeks, respectively, for maximum seed yields. In 1980, all cultivars achieved maximum seed yields with 2 weed-free weeks.

Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Jeffery M. Higgins ◽  
Ted Whitwell ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field experiments were conducted during 1985 and 1986 to determine the response of soybean [Glycine max(L.) Merr. ‘Coker 156’], pitted morningglory (Ipomoea lacunosaL. # IPOLA), and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq. # IPOHE] to acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl) phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide}, and lactofen {(±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-dinitrobenzoate}. Acifluorfen and lactofen were more phytotoxic to soybean 15 days after treatment (DAT) than fomesafen. All herbicides at low rates controlled 80% or more pitted morningglory. However, only the high rates (0.6 kg ai/ha) of acifluorfen and fomesafen controlled 80% or more ivyleaf morningglory 90 DAT. Full-season competition from untreated pitted morningglory reduced soybean seed yields 44 and 22% in 1985 and 1986, respectively, compared to 58 and 49% with untreated ivyleaf morningglory. Soybean seed yields were higher in plots receiving acifluorfen or fomesafen applications than lactofen applications.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 813-818 ◽  
Author(s):  
Michele A. Barker ◽  
Lafayette Thompson ◽  
F. Michael Godley

Field studies were conducted in North Carolina in 1981 and 1982 to evaluate the efficacy of postemergence over-the-top and postemergence-directed herbicides for control of five morningglory species: entireleaf [Ipomoea hederacea(L.) Jacq. var.integriusculaGray], tall [Ipomoea purpurea(L.) Roth. ♯3PHBPU], ivyleaf [Ipomoea hederacea(L.) Jacq. var.hederacea♯IPOHE], pitted [Ipomoea lacunosa(L.) ♯ IPOLA], and scarlet [Ipomoea coccinea(L.) ♯IPOCC]. The glabrous morningglories (scarlet and pitted) were more easily controlled than the pubescent morningglories (ivyleaf, tall, and entireleaf). Lower soybean injury, higher morningglory control, and greater soybean seed yields were obtained with over-the-top herbicide applications at 4 weeks after planting (WAP) than at 6 WAP. Pitted morningglory was tolerant to low rates of 2,4-DB [4-(2,4-dichlorophenoxy) butyric acid]. This herbicide applied over the top at the R1 stage of soybean growth produced low yields, probably as a result of morningglory interference and herbicide injury to the soybeans. Postemergence-directed applications of linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and metribuzin [4-amino-6-tert-butyl-3-(methylthio-as-triazin-5(4H)-one] alone or in tank mixtures with 2,4-DB resulted in soybean injury that ranged from 12 to 36%. Highest soybean seed yields (equivalent to weed-free control) from postemergence-directed herbicides were obtained with applications of 2,4-DB, linuron, and a tank mixture of metribuzin and 2,4-DB.


1992 ◽  
Vol 6 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Larry G. Heatherly ◽  
C. Dennis Elmore ◽  
Richard A. Wesley

Field studies were conducted for three consecutive years to determine if PRE and/or POST herbicides were needed in addition to preplant foliar-applied glyphosate and POST cultivation for maximum seed yield of irrigated and nonirrigated soybean planted in stale and undisturbed seedbeds on clay soil. Soybean seed yields following the use of PRE and POST herbicides alone or in combination were similar in all years, and exceeded seed yield following the use of glyphosate plus POST cultivation only. Plantings made in no-till and fall-till seedbeds produced similar seed yields when both PRE and POST herbicides were used. These results indicate that glyphosate plus cultivation was not adequate for soybean in stale seedbed plantings, and that either PRE or POST herbicides, but not both, were required for maximum seed yield.


1992 ◽  
Vol 38 (6) ◽  
pp. 588-593 ◽  
Author(s):  
D. J. Hume ◽  
D. H. Blair

In the absence of Bradyrhizobium japonicum populations in the soil, yields of field-grown soybean (Glycine max (L.) Merrill) usually respond to inoculation with B. japonicum. The objective of this research was to determine the relationship between numbers of B. japonicum per seed in inoculants and soybean nodulation and yield. A total of six field experiments were conducted in 1989 and 1990 on new soybean soils. In dilution trials, Grip inoculant was applied to provide approximately 106, 105, 104, and 103B. japonicum per seed at two locations in 1989. Nodule number and mass, as well as seed yield, increased curvilinearly upward with increasing log10 most probable numbers (MPNs) of B. japonicum. The yield response curve was best fit by a cubic equation, which accounted for 97% of the variation in yield. Seed yields increased 19% (1.83 to 2.13 Mg/ha) from 105 to 106B. japonicum per seed. In field experiments involving 8 commercial inoculants in 1989 and 10 in 1990, and conducted at two locations in each year, responses to increasing log MPNs in the inoculants also were concave upwards and cubic. In the two years, 78 and 46% of the yield variation was accounted for by log MPN per seed. Increasing MPN per seed from 105 to 106 improved yields in first-time fields by an average of 24%, indicating the present minimum standard of 105B. japonicum per seed should be increased. Key words: most probable numbers, response to inoculation, nodulation, Glycine max (L.) Merrill.


1992 ◽  
Vol 6 (4) ◽  
pp. 990-995 ◽  
Author(s):  
Daniel H. Poston ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field studies were conducted in 1988 and 1989 to examine the interrelations of cultivation and herbicide band width in controlling pitted morningglory and sicklepod in soybean. Alachlor + imazaquin PRE followed by imazaquin + surfactant POST were not applied or were applied on bands 15, 30, 45, 60, 75 cm wide or were broadcast. Plots were cultivated zero, one, two, or three times. Without cultivation, at least a 60-cm wide band was needed to achieve maximum soybean seed yields. A slight linear increase in soybean seed yield in response to increasing band width was observed with one cultivation. With two cultivations, soybean seed yields were similar with and without herbicides, but a 15-cm wide herbicide band was needed to achieve maximum production with three cultivations. Greatest gross returns exclusive of weed management costs were realized with two or three cultivations and a 15-cm wide band.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 836-839 ◽  
Author(s):  
Michael G. Patterson ◽  
Robert H. Walker ◽  
Daniel L. Colvin ◽  
Glenn Wehtje ◽  
John A. McGuire

Soybean field experiments were conducted to compare weed interference data obtained from small 2.7-m2plots to that obtained from large 11-m2plots. Soybean row spacings of 15, 30, 45, and 90 cm were used. Sicklepod, common cocklebur, and soybean biomass as dry matter were harvested from small plots 10 weeks after planting and were compared to weed biomass and soybean seed yield from the large plots. Sicklepod and common cocklebur biomass in small plots increased and soybean biomass decreased as soybean row spacing increased. Soybean biomass was not affected by row spacing when weeds were not present. Sicklepod and common cocklebur biomass in large plots increased and soybean seed yield decreased as soybean row spacing increased. Soybean seed yield was not affected by row spacing when weeds were not present. Comparison of regression coefficients for paired regression lines indicates that soybean biomass from small plots may be substituted for seed yield from large plots as a measure of sicklepod or common cocklebur interference if both size plots use the same soybean row spacing and are irrigated until harvest.


Weed Science ◽  
1979 ◽  
Vol 27 (6) ◽  
pp. 665-674 ◽  
Author(s):  
P. L. Orwick ◽  
M. M. Schreiber

Redroot pigweed (Amaranthus retroflexusL.) and robust foxtail [Setaria viridis(L.) Beauv. var.robusta-albaSchreiber (RWF) orSetaria viridisvar.robusta-purpureaSchreiber (RPF)] were investigated regarding their ability to interfere with soybean [Glycine max(L.) Merr. ‘Amsoy 71′] at different weed densities and soybean row spacing throughout two growing seasons. Final weed densities for each species tended to reach a common value because of intraspecific interference regardless of the initial density. With cultivation, a narrow soybean row spacing (38 cm) resulted in less weed growth than did a wide row spacing (76 cm) but with no cultivation, the trend was reversed. Soybeans provided less interference to foxtail than to pigweed during both growing seasons. Interference from foxtail adversely affected soybean yield components and soybean seed yield more than did pigweed interference. Water-stress conditions in 1976 increased the intensity of weed interference and reduced soybean seed yield more severely than in 1975 when moisture was adequate throughout the growing season.


Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Otis W. Howe ◽  
Lawrence R. Oliver

The interference and seed production potential of pitted morningglory (Ipomoea lacunosaL. # IPOLA) with conventional-row (1 m) and narrow-row (20 cm) ‘Hill’ soybeans [Glycine max(L.) Merr.] was studied for 2 yr. Pitted morningglory densities were 3.3, 10, 20, and 40 plants/m2while soybean densities were 23 and 50 plants/m2in conventional and narrow rows, respectively. Pitted morningglory interfered with soybean growth earlier in conventional-row soybeans than in narrow-row soybeans due to its rapid increase in leaf area index (LAI) and biomass from 4 to 8 weeks after emergence. Soybeans were competitive with pitted morningglory until the soybean reproductive stage began at 7 weeks after emergence. Pitted morningglory reduced soybean yields 17% more in a dry year than in a wet year. Yield of narrow-row soybeans was equal or greater than yield of conventional-row soybeans at all pitted morningglory densities. Conventional-row soybean yields were reduced an average of 42 and 81% at pitted morningglory densities of 3.3 and 40/m2, respectively, but yield of narrow-row soybeans was reduced only 6 and 62% at equivalent densities. Pitted morningglory grown without soybean interference produced an average of 52.3 million seeds/ha. Total seed production of pitted morningglory growing in soybeans increased as pitted morningglory density increased and was greater in conventional rows than in narrow rows. Narrow rows reduced total seed production an average of 90 and 68% at pitted morningglory densities of 3.3 and 40/m2, respectively.


Weed Science ◽  
1984 ◽  
Vol 32 (5) ◽  
pp. 702-706 ◽  
Author(s):  
Robert H. Walker ◽  
Michael G. Patterson ◽  
Ellis Hauser ◽  
David J. Isenhour ◽  
James W. Todd ◽  
...  

Results from identical experiments conducted at Headland, AL, and Plains, GA, from 1980 through 1982 show insecticide treatment had little effect on soybean [Glycine max(L.) Merr. ‘Coker 237′] growth and morphology. Maximum insecticide applications increased soybean seed weight in two of five trials. Soybeans maintained free of sicklepod (Cassia obtusifoliaL. ♯3CASOB) for 4 weeks after emergence produced yields equal to those receiving season-long control in all trials, and 2-week control was equal to season-long maintenance in three trials. Length of weed interference-free maintenance did not affect soybean height. The number of pods per plant and seed weight were decreased when there was no control. Sicklepod shoot fresh weight and numbers decreased as the weed-free period increased from 0 weeks through the season. Row spacing had no effect on soybean height or seed size; however, the number of pods per plant was higher in 80- than in 40-cm rows. Row spacing influenced yield in only one trial where 20-cm rows outyielded 40-cm rows. A significant interaction occurred between the weed-free period and row spacing in two trials. Soybeans in 20-cm rows outyielded those in 40- and 80-cm rows when sicklepod was not controlled (i.e., 0 weeks interference-free maintenance).


Sign in / Sign up

Export Citation Format

Share Document