Analytical Techniques to Measure Sethoxydim and Breakdown Products

Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 745-751 ◽  
Author(s):  
Antony R. Shoaf ◽  
William C. Carlson

A method was developed for the quantitative determination of trace levels of the widely used herbicide sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} and its metabolites in an aqueous solution using reversed-phase high-performance liquid chromatography (HPLC). Optimum extraction of sethoxydim was with dichloromethane and was only 15% efficient at pH 3. The limit of detection by HPLC for sethoxydim was 5 ng on column and <5 ppb in soil. At least five different compounds were detected in the commercial formulation, in EPA reference standards, and in commercial sethoxydim standards. Sethoxydim undergoes a rapid decomposition in the presence of water to form more polar products, which accounts for the low extraction efficiency. Decomposition was greatest under alkaline conditions. Acid pH and soil inhibited decomposition and gave greater recoveries of parent compound. At least one breakdown product cochromatographed with a known sulfone derivative. The procedures are directly applicable to soils, environmental waters, and plant and animal tissues.

Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


2021 ◽  
Vol 1 (1) ◽  
pp. 11-23
Author(s):  
Arjun Bhusal ◽  
Peter M. Muriana

In the US, sodium nitrate is used as a preservative and curing agent in processed meats and is therefore a regulated ingredient. Nitrate reducing bacteria (NRB) can convert vegetable nitrate into nitrite allowing green/clean label status in the US as per the USDA-FSIS definition of ‘natural nitrite’. The current ‘in-liquid’ test tube assay for detecting nitrite is not suitable for screening mixtures of bacteria nor is commercial nitrate broth suitable for growth of many Gram (+) bacteria. M17 broth was therefore used to develop M17-nitrate broth to be inclusive of Gram (+) bacteria. An ‘on-agar’ colony-screening assay was developed to detect the conversion of nitrate to nitrite on agar plates and could detect one NRB+ colony among ~300–500 colonies on a single plate. Samples that might have NRB were spread-plated on M17 agar plates, sandwiched with nitrate agar, and after incubation followed with sequential agar overlays containing the reagents used in the nitrate reduction assay; the appearance of red color zones above colonies indicated the presence of nitrite. NRB derived from various samples were confirmed for nitrate conversion and both nitrate and nitrite were quantified by C8 reversed-phase (RP) ion-pairing high performance liquid chromatography (HPLC) analysis (1 ppm limit of detection). Staphylococcus carnosus, a strain commonly used for nitrate reduction, was able to convert 1100 ppm M17-nitrate broth to 917 ppm nitrite. Staphylococcus caprae and Panteoa agglomerans, NRB isolated using the M17-nitrate agar assay, were also able to ferment the same broth to 916 ppm and 867 ppm nitrite, respectively. This is the first report of an on-agar colony screening assay for the detection and isolation of nitrite reducing bacteria allowing NRB to be readily isolated. This may allow for the identification of new bacteria that may have a more efficient process to generate nitrite, and possibly concomitant with production of additional natural antimicrobials, as vegetable nitrite becomes more widely used to prevent spore germination.


Amino Acids ◽  
2021 ◽  
Author(s):  
Grażyna Gałęzowska ◽  
Joanna Ratajczyk ◽  
Lidia Wolska

AbstractThe quantitation and qualification of amino acids are most commonly used in clinical and epidemiological studies, and provide an excellent way of monitoring compounds in human fluids which have not been monitored previously, to prevent some diseases. Because of this, it is not surprising that scientific interest in evaluating these compounds has resurfaced in recent years and has precipitated the development of a multitude of new analytical techniques. This review considers recent developments in HPLC analytics on the basis of publications from the last few years. It helps to update and systematize knowledge in this area. Particular attention is paid to the progress of analytical methods, pointing out the advantages and drawbacks of the various techniques used for the preparation, separation and determination of amino acids. Depending on the type of sample, the preparation conditions for HPLC analysis change. For this reason, the review has focused on three types of samples, namely urine, blood and cerebrospinal fluid. Despite time-consuming sample preparation before HPLC analysis, an additional derivatization technique should be used, depending on the detection technique used. There are proposals for columns that are specially modified for amino acid separation without derivatization, but the limit of detection of the substance is less beneficial. In view of the fact that amino acid analyses have been performed for years and new solutions may generate increased costs, it may turn out that older proposals are much more advantageous.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (05) ◽  
pp. 48-52
Author(s):  
A Lodhi ◽  
◽  
A Jain ◽  
B. Biswal

A validated high performance liquid chromatographic method was developed for the determination of chromium picolinate in pharmaceutical dosage forms. The analysis was performed at room temperature using a reversed-phase ODS, 5µm (250×4.6) mm column. The mobile phase consisted of acetonitrile: buffer (60:40 V/V) at a flow rate of 0.5 mL/min. The PDA-detector was set at 264 nm. The developed method showed a good linear relationship in the concentration range from 1.5 – 12.5 µg/mL with a correlation coefficient from 0.999. The limit of detection and limit of quantification were 0.0540513 and 0.1637919 µg/mL respectively.


2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2012 ◽  
Vol 1 (12) ◽  
pp. 410-413 ◽  
Author(s):  
Sukhbir Lal Khokra ◽  
Balram Choudhary ◽  
Heena Mehta

A rapid, simple and highly sensitive reversed phase high performance liquid chromatographic (RP-HPLC) method has been developed for the quantitative determination of Rabeprazole sodium and Aceclofenac in a combined dosage form. Rabeprazole sodium and Aceclofenac were chromatographed using C-18 column as stationary phase and methanol: acetonitrile: water (60 : 10 : 30 v/v/v) as the mobile phase at a flow rate of 1.0 ml/min at ambient temperature and detected at 280 nm. The retention time (RT) of Rabeprazole sodium and Aceclofenac were found to be 5.611 min and 2.102 minute, respectively. The linearities of Rabeprazole sodium and Aceclofenac were in the range of 1-10 µg/ml and 3-15 µg/ml, respectively. The limit of detection was found to be 0.091 µg/ml for Rabeprazole sodium and 0.043 µg/ml for Aceclofenac. The proposed method was applied for the determination of Rabeprazole sodium and Aceclofenac in a combined dosage form and result was found satisfactory.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12450 International Current Pharmaceutical Journal 2012, 1(12): 410-413


Author(s):  
Kanan G Gamit ◽  
Niraj Y Vyas ◽  
Nishit D Patel ◽  
Manan A Raval

Objective: A study was aimed to estimate guggulsterone-Z (GZ) in Gokshuradi Guggulu (GG).Methods: An analytical method was developed and validated using Waters Alliance high-performance liquid chromatography system (Empower software), equipped with photodiode array detector. Separation was achieved using Phenomenex, C-18 (250 mm×4.6 mm, 5 μ) column. Mobile phase consisted of acetonitrile:water (70:30,v/v). Flow rate was set to 1 ml/min and detection was performed at 251 nm.Results and Discussion: Validation parameters such as linearity, precision, accuracy, limit of detection, limit of quantification, and robustness were performed. Amount of GZ was estimated using linearity equation.Conclusion: GG was found to contain 0.815±0.03 g% w/w GZ. Validated method may be used as one of the parameters to standardize the formulation.


2011 ◽  
Vol 140 ◽  
pp. 296-301 ◽  
Author(s):  
Cai Mei Wu ◽  
Hong Min Yuan ◽  
Gang Jia ◽  
Zhi Sheng Wang ◽  
Xiu Qun Wu

A reversed high performance liquid chromatography method was developed for the quantitative determination of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala. Mimosine and 2,3DHP were extracted using 0.1N HCl.The chromatograph conditions were investigated and optimized. The optimal HPLC conditions as follows: Agilent HC-C18 column (4.6×150mm,5μm) was used at 30°C. The method used a variable wavelength UV detector at 280nm, the mobile phase consisted of 0.2 % (w/v) orthophosphoric acid and methanol, the gradient elution was adopted. The injection volume was 10μL. The linearity is favorable in the range of 1.0 to 50μg mL-1with a correlation coefficient of 0.99998 for mimosine and 0.99902 for 2,3DHP. Under the optimal conditions, the method limit of detection (LOD) of mimosine and 2,3DHP were 0.40mg/kg and 0.55mg/kg respectively. The recovery of mimosine was 87.00-94.70% with the RSD (n=5) of 2.75-3.81% in the spiked levels 0,1, 5, 20mg/g. At the same time, the recovery of 2,3DHP was 88-95.4% with the RSD (n=5) of 2.24-4.90%. The method was found to be simple, sensitive, fast and accurate, and has been applied successfully for the quantitative detection of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala, plasma and excretion of ruminant.


Sign in / Sign up

Export Citation Format

Share Document