Effects of Difenzoquat on Photoreactions and Respiration in Wheat (Triticum aestivum) and Wild Oat (Avena fatua)

Weed Science ◽  
1983 ◽  
Vol 31 (5) ◽  
pp. 693-699 ◽  
Author(s):  
Blaik P. Halling ◽  
Richard Behrens

Experiments were conducted with isolated protoplasts of wild oat (Avena fatuaL. # AVEFA) and isolated chloroplasts of wild oat and wheat (Triticum aestivumL.), to determine if the methyl sulfate salt of difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium) might influence photoreactions in these species. Difenzoquat did not affect CO2fixation, uncoupled electron transport, or proton uptake. At concentrations of 0.5 mM and 1 mM, difenzoquat caused a slight, but statistically significant, inhibition of photophosphorylation. Experiments assaying coupled electron transport indicated that inhibition of photophosphorylation occurred not through uncoupling, but by an energy-transfer inhibition. This same effect was observed in isolated mitocondria of both species, with about 50% inhibition of state 3 respiration rates occurring with 10 μM difenzoquat. However, no important differentials were observed in the relative susceptibilities of wheat and wild oat mitochondria. Difenzoquat also functioned as a weak autooxidizing electron acceptor in photosynthetic electron transport. Therefore, difenzoquat-induced leaf chlorosis and necrosis may result from a bipyridilium-type electron acceptor activity if sufficient herbicide is absorbed.

Weed Science ◽  
1974 ◽  
Vol 22 (5) ◽  
pp. 476-480 ◽  
Author(s):  
Robert W. Neidermyer ◽  
John D. Nalewaja

The response of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) to barban (4-chloro-2-butynyl-m-chlorocarbanilate) was studied as influenced by plant morphology and air temperature after application. Growth of wheat and wild oat seedlings was reduced by barban at 0.3 μg and 0.6 μg applied to the first node, respectively. Barban application to the base and midpoint of the first leaf blade required a lower dose to reduce wild oat growth than wheat growth. Increased tillering occurred from barban injury to the main culm in wheat. Wheat and wild oat susceptibility to barban increased as the post-treatment temperature decreased from 32 to 10 C. Barban selectivity for wild oats in wheat was greater at 27 and 21 C than at 16 and 10 C.


1972 ◽  
Vol 27 (4) ◽  
pp. 445-455 ◽  
Author(s):  
Heinrich Strotmann ◽  
Christa Von Gösseln

Photosystem I related phosphorylation of isolated chloroplasts was investigated with special reference to the stoichiometry between ATP production and electron transprt (ATP: 2e⊖). The system studied contained DCMU to inhibit electron flow from photosystem II, ascorbate and DPIP to supply electrons to photosystem I, and methylviologen as electron acceptor. The following results were obtained:1. Basal electron transport is stimulated by the addition of the phosphorylating system, indicating that phosphorylation is really coupled to non-cyclic electron flow. The ratio ATP: 2e⊖ is 1, when the increase of electron flow obtained by the addition of ADP and phosphate is correlated to phosphorylation. This ratio is constant upon varying several parameters including DPIP concentration and light intensity.2. In the absence of methylviologen a DPIP catalyzed cyclic phosphorylation takes place (cf. I. c.7, 11, 12). Phosphorylation is not increased by the addition of methylviologen, indicating that both, the cyclic DPIP mediated and the non-cyclic system are coupled to the same phosphorylation site and limited by the same reaction step.3. In the absence of oxygen a methylviologen supported cyclic phosphorylation occurs. Comparing optimum rates, phosphorylation under these conditions is about twice as high as in the noncyclic system. Therefore we conclude that two phosphorylation sites are involved in methylviologen catalyzed cyclic electron transport. This system is sensitive against trypsin treatment of the chloroplasts, whereas the linear system is not.4. The two cyclic systems as well as the non-cyclic system are coupled to reversible proton uptake. Furthermore the linear system exhibits an irreversible uptake of hydrogen ions, which is stoichiometric to electron flow. From the reversible and the irreversible components of the pH changes the ratio of the proton pump to electron transprt can be calculated. Under steady state conditions the ration H⨁ : e⊖ approaches 1.


Weed Science ◽  
1977 ◽  
Vol 25 (5) ◽  
pp. 382-385 ◽  
Author(s):  
B.G. Todd ◽  
E.H. Stobbe

The selectivity of {2-[4-(2′,4′-dichlorophenoxy) phenoxy] methyl propionate}, (hereinafter referred to as dichlofop methyl), among wheat (Triticum aestivumL. ‘Neepawa’), barley (Hordeum vulgareL. ‘Bonanza’), wild oat (Avena fatuaL.), and green foxtail (Setaria viridis(L.) Beauv.) was investigated. On an ED50basis, barley, wild oat, and green foxtail were 2, 190, and 1,090 times more sensitive, respectively, to foliar-applied dichlofop methyl at the two-leaf stage than was wheat. Selectivity decreased with increasing maturity of the plant material with the ratio of selectivity between barley and wild oat decreasing from 55 at the two-leaf stage to three at the four-leaf-plus-one-tiller stage. Greater spray retention and more rapid penetration of dichlofop methyl partially explained the susceptibility of green foxtail, but did not explain selectivity between wheat, wild oat, and barley. Root uptake of14C-dichlofop methyl by the four species was proportional to the amount of solution absorbed during the treatment period and to the concentration of dichlofop methyl in the treatment solution but was not related to species sensitivity to this herbicide.


1997 ◽  
Vol 11 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Douglas W. Miller

Rates and application timings of postemergence herbicides for wild oat control in spring wheat and barley were evaluated at Crookston, MN, from 1994 to 1996. Diclofop, imazamethabenz, and fenoxaprop plus MCPA plus thifensulfuron plus tribenuron were applied to one- to three-leaf wild oat; and difenzoquat, imazamethabenz, fenoxaprop plus MCPA plus thifensulfuron plus tribenuron, and fenoxaprop plus 2,4-D plus MCPA were applied to four- to five-leaf wild oat at 1/2 ×, 3/4 ×, and 1 × rates. Wild oat response to herbicide rate and timing was similar in wheat and barley. Wild oat control with 1/2 × rates generally was less than that with 3/4 × rates, which was lower than or similar to that with 1 × rates. Wild oat biomass was often reduced less with 1/2 × rates than 1 × rates. However, reducing herbicide rates generally did not influence grain yields or net economic return. Grain yields and net economic return were generally greater in herbicide-treated plots than in the nontreated control.


1994 ◽  
Vol 8 (3) ◽  
pp. 607-611 ◽  
Author(s):  
Kenneth J. Kirkland

The influence of incorporation vs no incorporation on the efficacy of granular triallate applied in mid-October at 1400 and 1700 g ai/ha to control wild oat was evaluated in spring wheat in west central Saskatchewan over a 7-yr period. All fall-applied triallate reduced wild oat panicles and fresh weight, and increased yield compared to untreated checks. With applications in standing wheat stubble there was no difference in wild oat control from incorporation versus no incorporation. All triallate treatments reduced wild oat panicles and fresh weight by over 95%, and resulted in wheat yield increases ranging from 29 to 67%. In tilled fallow, incorporated granules provided better wild oat control than when there was no incorporation. Wheat yield increases ranged from 50 to 85% for triallate treatments with yield for incorporated triallate approximately 15% greater than non-incorporated. The rate of triallate did not affect the level of wild oat control achieved with either incorporation method. In separate tolerance studies triallate incorporation method did not affect spring wheat emergence or subsequent development.


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 20-22 ◽  
Author(s):  
Paul N.P. Chow

There was no antagonism between dalapon (2,2-dichloropropionic acid) or TCA (trichloroacetic acid) and BAS 9052 {2 - [1 -(ethoxyimino)butyl] - 5 - [2 -(ethylthio) -propyl] -3-hydroxy-2-cyclohexen-1-one} at 0.3 kg/ha for control of volunteer barley (Hordeum vulgareL. ‘Bonanza’) and wheat (Triticum aestivumL. ‘Neepawa’) in flax (Linum usitatissimumL. ‘Dufferin’). However, MCPA {[(4-chloro-o- tolyl)oxy] acetic acid} amine at 0.2 to 0.6 kg/ha had an antagonistic effect on BAS 9052, especially at 0.1 kg/ha, for control of wild oat (Avena fatuaL.). BAS 9052 at 0.3 kg/ha overcame this antagonistic effect of MCPA. Field results confirmed that wild oat control with BAS 9052 at 0.3 kg/ha was not reduced by the mixtures with each of four broadleaf weed herbicides at 0.6 kg/ha. The mixtures gave excellent control of grass and broadleaf weeds. Flax seed yields were five times that of the unsprayed check and were equal to the yield of the handweeded treatment.


1982 ◽  
Vol 60 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Rungsit Suwanketnikom ◽  
Kriton K. Hatzios ◽  
Donald Penner ◽  
Duncan Bell

The effect of bentazon (3-isopropyl-1H-2,1,3-benzathiadiazin-(4)3H-one 2,2-dioxide) on various photochemical reactions of isolated spinach (Spinacea oleracea L.) chloroplasts was studied at concentrations 0, 5, 15, 45, and 135 μM. Bentazon at a concentration of 135 μM strongly inhibited uncoupled electron transport from water to ferricyanide or to methylviologen with inhibition percentages greater than 90%. Photosystem II mediated electron transport from water to oxidized diaminodurene, with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) blocking photosystem I, was also strongly inhibited by bentazon at 135 μM but less with lower concentrations of bentazon. Photosystem I mediated transfer of electrons from diaminodurene to methylviologen, with 3,4-dichlorophenyl-1,1-dimethylurea (DCMU) blocking photosystem II, was not inhibited by bentazon at any concentration examined. Transfer of electrons from catechol to methylviologen in hydroxylamine-treated chloroplasts was inhibited by bentazon, and the inhibition percentages were again concentration dependent. The data indicate that the site of bentazon inhibition of the photosynthetic electron transport is at the reducing side of photosystem II, between the primary electron acceptor Q and plastoquinone.


Sign in / Sign up

Export Citation Format

Share Document