Influence of Tillage Systems on Giant Foxtail,Setaria faberi, and Velvetleaf,Abutilon theophrasti, Density and Control in Corn,Zea mays

Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 642-647 ◽  
Author(s):  
Douglas D. Buhler ◽  
Tommy C. Daniel

Giant foxtail density in corn was greater under no-till and chisel plow tillage systems than conventional or till plant. Giant foxtail density in no-till was 1400 shoots/m256 days after corn planting compared to 170 under conventional tillage. Velvedeaf density was greater under conventional tillage than all other tillage systems. Velvetleaf density was 120 plants/m256 days after corn planting under conventional tillage compared to 20 in no-till. Control of giant foxtail was often less under no-till or chisel plow conditions than conventional or till plant with the same herbicide treatment. Giant foxtail control with metolachlor treatments was affected less by tillage than similar treatments containing alachlor. Velvedeaf control was less with conventional tillage than other tillage systems when less than 1.7 kg/ha of atrazine was applied. Corn injury was not influenced by tillage systems. Corn yield was not affected by tillage systems under weed-free conditions. Several herbicide treatments resulted in corn yield similar to the weed-free under conventional tillage, but no herbicide treatment produced corn yield similar to the weed-free control under no-till conditions.

Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Douglas D. Buhler ◽  
Edward S. Oplinger

Field research was conducted at Arlington, WI, and Janesville, WI, in 1986 and 1987 to evaluate the effect of conventional-tillage, chisel plow, and no-till systems on the density and control of annual weed species in solid-seeded soybean. Common lambsquarters densities were not greatly influenced by tillage systems, but redroot pigweed densities were generally highest in the chisel plow system. Conventional tillage always had greater velvetleaf densities than no-till and no-till always had greater giant foxtail densities than conventional tillage. Giant foxtail and redroot pigweed became more difficult to control when tillage was reduced, while velvetleaf became less of a problem. This response was not observed with all herbicide treatments evaluated and several herbicide treatments provided excellent weed control. Soybean yield was not affected by tillage systems under weed-free conditions and differences in soybean yield appeared to be due to differences in weed control.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Douglas D. Buhler ◽  
Thomas C. Mester

The effect of tillage systems on depth of emergence and densities of giant and green foxtail under different environmental and cropping conditions were evaluated from 1985 to 1987 at Arlington, Hancock, and Janesville, WI. Mean emergence depths in no-till were the shallowest, followed by chisel plow and conventional tillage at each location. At least 40% of the giant and green foxtail plants emerged from the upper 1 cm of soil in no-till compared to about 25% in chisel plow and less than 15% in conventional tillage. As many as 25% of the plants emerged from greater than 4 cm in conventional tillage compared to about 10% in chisel plow and less than 5% in no-till. Seedlings emerged from greater depths in a loamy sand than in a silt loam soil regardless of tillage system. At Arlington, green foxtail was the dominant species in conventional tillage, while giant foxtail dominated in chisel plow and no-till. Foxtail densities were greater in chisel plow and no-till than in conventional tillage at all three locations.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 520-526 ◽  
Author(s):  
George Kapusta

Twenty herbicide treatments were evaluated on conventional-till (plow, disc, and harrow), minimum-till (disc only), and no-till planted soybeans [Glycine max(L.) Merr.] from 1976 through 1978 at the Belleville Research Center in St. Clair County, Illinois. The soil type was a Weir silt loam (Typic Ochraqualf) characterized by poor internal drainage and 1.2% organic matter. Weed population by species, weed control, and soybean population, injury, and yield were obtained. Fall panicum (Panicum dichotomiflorumMichx.) and giant foxtail (Setaria faberiHerrm.) were the dominant species in all tillage systems, exceeding 1 million plants/ha in the conventional and no-till plots. These species and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq.] were the most difficult to control each year. Weed control was the poorest in the no-till plots because of the large size of the weeds at the time of herbicide application, insufficient rainfall following, and because the plots were not cultivated. The soybean population was equal in all tillage systems except in 1976 when the no-till population exceeded that in the other tillage systems. Treatments that included oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) caused 42 and 35% soybean injury in the 1976 minimum and no-till plots, respectively. Postemergence-applied naptalam (N-1-naphthylphthalamic acid) plus dinoseb (2-sec-butyl-4,6-dinitrophenol) caused leaf burn each year that ranged from 5 to 35% but all plants recovered within several weeks of application. The seedbed tillage method and herbicide treatments did not significantly affect soybean yields in 1976 when all the herbicides were effective. No-till yields in 1977 and 1978 were substantially lower than yields in conventional and minimum-till plots because of poor weed control. Soybean yields were 2506, 2466, and 1714 kg/ha in the conventional-till, minimum-till, and no-till plots, respectively, when averaged over the 3 yr and 20 herbicide treatments.


1993 ◽  
Vol 7 (2) ◽  
pp. 443-451 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz

Field experiments were conducted from 1979 to 1989 to determine the influence of conventional, reduced, and no-tillage systems and different herbicide combinations on weed species and population, weed control, and soybean injury, population, and yield. In no-till (NT) non-treated plots, there was an abrupt shift from horseweed as the dominant early spring emerging weed to gray goldenrod in 1985. Following its initial observation, gray goldenrod became the dominant species within 2 yr, with giant foxtail as the only other species observed in these plots. Giant foxtail was the dominant weed species from 1980 to 1989 in conventional till (CT) and reduced-till (RT) plots. There also was a shift in the frequency of occurrence and in density of several broadleaf weed species during the 11-yr study. Most herbicides provided excellent control of all weeds in all tillage systems, especially those that included POST herbicides. There was little difference between glyphosate and paraquat in controlling weeds present at the time of planting in NT. PRE herbicides caused 2 to 9% soybean injury with slightly greater injury occurring in CT and RT than in NT. The POST broadleaf herbicides did not significantly increase soybean injury. There were no differences in soybean population or yield among the herbicide treatments regardless of tillage. There also was no difference in soybean population or yield in NT compared with CT when averaged over all herbicide treatments.


Weed Science ◽  
1992 ◽  
Vol 40 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Douglas D. Buhler

Field research was conducted at Hancock, WI, from 1985 through 1987 to evaluate effects of conventional tillage, chisel plow, ridge tillage, and no-tillage systems on population dynamics and control of annual weed species in corn grown continuously on a loamy sand soil without irrigation. In all years of the study, green foxtail densities were greater in chisel plow and no-tillage than in the conventional tillage system, while ridge tillage had densities lower than all other tillage systems. Common lambsquarters density in the chisel plow system reached nearly 500 plants m−2compared to less than 75 plants m−2in the other tillage systems when averaged over years. Average redroot pigweed densities in the no-tillage and chisel plow systems were 307 and 245 plants m−2compared to less than 25 plants m−2in the conventional and ridge tillage systems. Horseweed was observed only in no-tillage and ridge tillage plots. Green foxtail and redroot pigweed were more difficult to control in chisel plow and no-tillage than in the conventional and ridge tillage systems with several herbicide treatments. Corn yields were not affected by tillage systems under weed-free conditions. Corn yield differences among tillage systems when the same herbicide treatment was applied appeared to be due to differences in weed control.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 217-222 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt ◽  
Michael Barrett

Experiments were conducted in 1985 to 1987 to evaluate the effects of conventional and no-tillage systems on the weed control provided by clomazone applied preemergence in soybeans. The persistence of clomazone in soil of the two tillage systems was also determined. Increasing the clomazone rate from 0.8 to 1.4 kg/ha did not increase weed control. Clomazone controlled 80% or more of jimsonweed, velvetleaf, and giant foxtail. Common cocklebur control ranged from about 50 to 70% in no-till and from 80 to 90% in conventional tillage. Generally, soybean pods/plant and yields were lower from clomazone treatments than from handweeded treatments due to inadequate common cocklebur control. Over 40% of the clomazone applied did not reach the soil surface; it was either intercepted by wheat straw, volatilized, or both. Clomazone persisted longer in conventional tillage than in no-tillage in. However, in 1986, clomazone was equally persistent in the two tillage systems. The half-life of clomazone was 34 and 6 days in 1985 in conventional and no-tillage, respectively, and in 1986, 18 and 16 days in conventional and no-tillage, respectively. Significant clomazone concentrations were not found below 10 cm in the soil profile. Corn planted without tillage (no-till) approximately 1 yr after clomazone application was not injured and yields were not reduced due to prior clomazone use.


Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 645-653 ◽  
Author(s):  
Marvin M. Schreiber

A long-term integrated pest management study initiated in 1980 and continued through 1991 was conducted to determine interactions of tillage, crop rotation, and herbicide use levels on weed seed populations, weed populations, and crop yield. This paper presents giant foxtail seed population and stand along with corn yield in continuous corn, corn rotated with soybean, or corn following wheat in a soybean-wheat-corn rotation. Increasing herbicide use levels above the minimum reduced giant foxtail seed in the 0- to 2.5-cm depth of soil. Reducing tillage from conventional moldboard plowing to chiseling to no-tilling increased giant foxtail seed in only the top 0 to 2.5 cm of soil. No-tilling increased giant foxtail seed over conventional tillage in each year data were collected. Growing corn in a soybean-corn or soybean-wheat-corn rotation reduced giant foxtail seed from corn grown continuously in all three soil depths sampled: 0 to 2.5 cm, 2.5 to 10 cm, and 10 to 20 cm. Although stands of giant foxtail tended to follow soil weed seed counts, crop rotation significantly reduced giant foxtail stand with maximum reduction in the soybean-wheat-corn rotation in all tillage systems. Giant foxtail stands were reduced following wheat in no-tilling, probably because of the allelopathic influence of wheat straw. Corn yields showed weed management levels above minimum control are not justified regardless of tillage and crop rotation.


2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


Weed Science ◽  
1988 ◽  
Vol 36 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Douglas D. Buhler

Application time did not greatly influence control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) or common lambsquarters (Chenopodium albumL. # CHEAL) in no-till corn (Zea maysL. ‘Pioneer 3747’) with fluorochloridone {3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl) phenyl]-2-pyrrolidinone}. Giant foxtail (Setaria faberiHerrm. # SETFA) control was reduced as much as 25% by 90 days after planting when fluorochloridone was applied early preplant rather than preemergence. Fluorochloridone at 0.8 kg/ha applied preplant or preemergence gave 83% or greater control of common lambsquarters and giant foxtail for the entire growing season. However, velvetleaf control with the same treatments was 61% or less. Fluorochloridone caused minimal corn injury. Greenhouse bioassay indicated that fluorochloridone may carry over and injure soybean[Glycine max(L.) Merr.] the year after application. Imbibition of fluorochloridone by seed of corn and giant foxtail did not reduce germination at concentrations up to 10-3M. Giant foxtail seedling fresh weight was reduced 80% following imbibition of 10-5M fluorochloridone. Corn seedling fresh weight was not reduced by imbibition of up to 10-4M fluorochloridone.


Sign in / Sign up

Export Citation Format

Share Document