Volunteer Barley (Hordeum vulgare) Interference in Canola (Brassica campestrisandB. napus)

Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 734-739 ◽  
Author(s):  
John T. O'Donovan ◽  
Arvind K. Sharma ◽  
Ken J. Kirkland ◽  
E. Ann De St. Remy

The yield potential and the effect on yield loss of canola of different densities of volunteer barley were investigated at three locations in western Canada. Field studies were conducted from 1982 to 1986. Rectangular hyperbolic models based on data pooled over years, locations, and canola cultivars, and incorporating different densities of volunteer barley and canola accurately portrayed field responses in most instances. Results indicated that volunteer barley severely reduced canola yield. However, financial losses due to reduced canola yield were partly offset by the volunteer barley crop.

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
V. K. Nandula ◽  
D. H. Poston ◽  
K. N. Reddy ◽  
K. Whiting

Recently, halosulfuron injury in soybean through off-target movement of halosulfuron when applied to rice fields has been reported. Sulfonylurea-tolerant (ST) soybean varieties have enhanced tolerance for sulfonylurea herbicides and might provide an option for mitigating injury to soybean from halosulfuron drift. Experiments were conducted to evaluate the effect of halosulfuron on growth and yield of selected soybean varieties with ST trait alone and stacked with glyphosate resistance trait. Soybean plants were treated with halosulfuron at 0, 0.0043, 0.0087, 0.017, 0.034, and 0.069 kg ai/ha rate at the V3 growth stage in the greenhouse and at 0.034 kg/ha rate (labeled use rate in rice) in the field studies. All soybean varieties containing the ST trait exhibited some halosulfuron injury, but survived the halosulfuron application in the greenhouse. In field studies, a single POST application of halosulfuron at 0.034 kg/ha to soybean at three-trifoliolate leaf stage or at full bloom stage resulted in halosulfuron injury to a certain extent regardless of ST trait. Halosulfuron did not have a significant effect on yield of ST varieties compared to their respective nontreated controls. Severe halosulfuron injury in two non-ST varieties resulted in yield loss.


2016 ◽  
Vol 30 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Dennis C. Odero ◽  
Mathew Duchrow ◽  
Nikol Havranek

Fall panicum is the most troublesome annual grass weed in sugarcane in Florida. The critical timing of fall panicum removal in sugarcane or the maximum amount of early season interference that sugarcane can tolerate before it suffers irrecoverable yield loss is not known. Field studies were conducted from 2012 to 2015 in Belle Glade, FL to determine the critical timing of fall panicum removal and season-long interference in sugarcane. The effect of season-long fall panicum interference and critical timing of removal based on 5 and 10% acceptable yield loss (AYL) levels were determined by fitting a log-logistic equation to percentage millable stalk, cane, and sugar yield loss data. Millable stalks, cane, and sucrose yield decreased as the duration of fall panicum interference increased. Season-long interference of fall panicum resulted in 34 to 60%, 34 to 62%, and 44 to 60% millable stalk, cane, and sucrose yield loss, respectively. The critical timing of fall panicum removal based on 5 and 10% AYL for millable stalks was 5 to 9 wk after sugarcane emergence (WAE). At 5 and 10% AYL, the critical timing of fall panicum removal ranged from 5 to 9 WAE and 6 to 8 WAE for cane and sucrose yield loss, respectively. These results show that fall panicum is competitive with sugarcane early in the season, demonstrating the need for timely early-season control to reduce negative effect on yield.


2000 ◽  
Vol 132 (3) ◽  
pp. 369-371 ◽  
Author(s):  
I.L. Wise ◽  
R.J. Lamb

Plant bugs, Lygus Kelton, damage many crops in western Canada (Kelton 1980; Wise and Lamb 1998; Wise et al. 2000), the common species in Manitoba being Lygus lineolaris (Palisot de Beauvois), Lygus borealis (Kelton), and Lygus elisus Van Duzee (Gerber and Wise 1995). Reports of plant bugs on flax, Linum usitatissimum L., are limited to an oviposition study (Painter 1927) and anecdotal descriptions of feeding damage in Canada (Beirne 1972) and Europe (Ferguson and Fitt 1991). In western Canada, flax is grown as an oilseed crop on about 600 000 ha annually (Canada Grains Council 1999). The objectives of this study were to determine (i) the species of plant bugs in oilseed flax, (ii) their ability to complete development in flax, (iii) the number of generations they complete, and (iv) the yield loss they cause.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 318 ◽  
Author(s):  
Charles Nelimor ◽  
Baffour Badu-Apraku ◽  
Antonia Yarney Tetteh ◽  
Ana Luísa Garcia-Oliveira ◽  
Assanvo Simon-Pierre N’guetta

Maize landrace accessions constitute an invaluable gene pool of unexplored alleles that can be harnessed to mitigate the challenges of the narrowing genetic base, declined genetic gains, and reduced resilience to abiotic stress in modern varieties developed from repeated recycling of few superior breeding lines. The objective of this study was to identify extra-early maize landraces that express tolerance to drought and/or heat stress and maintain high grain yield (GY) with other desirable agronomic/morpho-physiological traits. Field experiments were carried out over two years on 66 extra-early maturing maize landraces and six drought and/or heat-tolerant populations under drought stress (DS), heat stress (HS), combined both stresses (DSHS), and non-stress (NS) conditions as a control. Wide variations were observed across the accessions for measured traits under each stress, demonstrating the existence of substantial natural variation for tolerance to the abiotic stresses in the maize accessions. Performance under DS was predictive of yield potential under DSHS, but tolerance to HS was independent of tolerance to DS and DSHS. The accessions displayed greater tolerance to HS (23% yield loss) relative to DS (49% yield loss) and DSHS (yield loss = 58%). Accessions TZm-1162, TZm-1167, TZm-1472, and TZm-1508 showed particularly good adaptation to the three stresses. These landrace accessions should be further explored to identify the genes underlying their high tolerance and they could be exploited in maize breeding as a resource for broadening the genetic base and increasing the abiotic stress resilience of elite maize varieties.


1991 ◽  
Vol 18 (2) ◽  
pp. 67-71 ◽  
Author(s):  
G. Wehtje ◽  
J. W. Wilcut ◽  
J. A. McGuire ◽  
T. V. Hicks

Abstract Field studies were conducted over a three year period to examine the sensitivity of four peanut (Arachis hypogaea L.) cultivars (Florunner, Sunrunner, Southern runner, and NC 7) to foliar applications of paraquat (1, 1′-dimethyl-4, 4′-bipyridinium ion). Treatments included an untreated control and four herbicide treatments: paraquat applied alone at 0.14 and 0.28 kg/ha, or tank mixed with alachlor [2-chloro-N-(2, 6-diethylphenyl)-N-(methoxymethyl)acetamide] at 4.40 kg/ha. Weeds were hand-removed so that only herbicidal treatments were variables. Paraquat phytotoxicity did not differ between cultivars. No cultivar evaluated was abnormally sensitive nor tolerant to any paraquat-containing treatment. Laboratory studies utilizing radio labelled paraquat revealed that foliar absorption and translocation of paraquat did not vary between peanut cultivars. Yield differences were attributed to differences in yield potential between cultivars.


2014 ◽  
Vol 66 (1) ◽  
pp. 3-15
Author(s):  
Sylwia Ciaglo-Androsiuk

AbstractRelation between morphological traits of the root system and yield related traits is an important issue concerning efforts aiming at improving of ideotype of cultivated plants species, including pea. In this paper, to analyse the dependency between traits describing the root system morphology and yield potential, Person’s andSpearman's_correlations as well as canonical correlations were used.Root system was analyzed in 14 and 21 day-old seedlings growing in blotting-paper cylinders. Yield potential of pea was analysed in a field experiment. Results of Person’s and Spearman's_correlations revealed that number of lateral roots and lateral roots density were correlated witch yield related traits. Correlation between root length and shoot length was observed only for 14 day-old seedlings. The result of canonical correlations revealed that number of lateral roots and lateral roots density had the largest effect on yield related traits. This work highlights, that in order to improve the yield of pea it might become necessary to understand genetic determination of morphological traits of the root system, especially number of lateral roots.


2006 ◽  
Vol 113 (6) ◽  
pp. 267-274 ◽  
Author(s):  
H. Su ◽  
S. F. Hwang ◽  
K. F. Chang ◽  
R. L. Conner ◽  
A. G. Xue ◽  
...  
Keyword(s):  

1998 ◽  
Vol 78 (2) ◽  
pp. 217-222 ◽  
Author(s):  
M. J. Edney ◽  
T. M. Choo ◽  
D. Kong ◽  
T. Ferguson ◽  
K. M. Ho ◽  
...  

Kernel colour is an important marketing trait for both malting and feed barleys. Therefore a study was initiated to investigate the kernel colour of 75 Canadian barley (Hordeum vulgare L.) cultivars at three locations (Charlottetown, Ottawa and Bentley) across Canada in 1991 and 1992. Kernel colour was measured by an Instrumar Colormet Spectrocolorimeter. Kernel colour was found to be brighter at the two locations in eastern Canada (Charlottetown and Ottawa) than at the location in western Canada (Bentley). Two-row cultivars on average were more discoloured than six-row cultivars; eastern two-row were more discoloured than western two-row. Covered barleys were less discoloured than hulless barleys in five of the six environments, but covered barleys at Bentley in 1992 were more discoloured than hulless barleys. Kernel discolouration appeared to be associated with susceptibility to net blotch for six-row cultivars. More studies are needed on kernel discolouration of barley. Key words: Barley, Hordeum vulgare, kernel colour


2014 ◽  
Vol 146 (3) ◽  
pp. 335-346 ◽  
Author(s):  
M.A.H. Smith ◽  
I.L. Wise ◽  
S.L. Fox ◽  
C.L. Vera ◽  
R.M. DePauw ◽  
...  

AbstractSpring wheat varieties with the Sm1 gene for resistance to wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), were compared with susceptible wheat (Triticum Linnaeus; Poaceae) with respect to sources of yield loss and reduction in market value from wheat midge feeding damage. Four resistant varietal blends (90% Sm1 wheat plus 10% susceptible refuge) and four susceptible cultivars were grown in replicated experiments at eight locations in western Canada. Frequencies and 1000-kernel weights of undamaged and midge-damaged seeds were assessed before harvest by dissecting samples of ripe spikes, and after harvest in samples of cleaned grain. Spike data were used to estimate yield losses from reduced weight of damaged seeds and loss of severely damaged seeds (⩽8 mg) at harvest. Among midge-damaged seeds in spikes, few were severely damaged in resistant varietal blends, whereas most were severely damaged in susceptible cultivars. Cleaned, harvested grain of resistant varietal blends and susceptible cultivars had similar frequencies of midge damage and were assessed similar market grades. The primary benefit of midge-resistant wheat was reduced yield loss due to seed damage by wheat midge larvae. Resistant wheat did not protect against loss of market grade, but market value could increase due to larger yields.


Sign in / Sign up

Export Citation Format

Share Document