Comparisons of Dihydroxybenzenes and Paraquat

Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 179-182 ◽  
Author(s):  
E. J. Hogue ◽  
G. F. Warren

Although similar in mode of action, 1,2-dihydroxybenzene (catechol) and 1,1′-dimethyl-4,4′bipyridinium ion (paraquat) at different levels were required to kill plants. Both chemicals were fast-acting, they both required light to be active, and herbicides that inhibit photosynthesis protected the plants temporarily against the action of both compounds. Paraquat and catechol had additive effects on black nightshade (Solanum nigrum L.) but not on redroot pigweed (Amaranthus retroflexus L.). Catechol protected redroot pigweed against the action of paraquat.

Weed Science ◽  
1983 ◽  
Vol 31 (3) ◽  
pp. 290-293 ◽  
Author(s):  
John H. Miller ◽  
Charles H. Carter

For 3 yr, fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone} at 0.1, 0.2, and 0.3 kg/ha, was applied with or without 0.6 kg/ha of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) before the preplanting irrigation for cotton (Gossypium hirsutumL.). Without trifluralin, fluridone at 0.1 kg/ha controlled less than 60% of annual grasses or redroot pigweed (Amaranthus retroflexusL.), but the 0.3-kg/ha rate controlled 90%. With trifluralin, fluridone at all rates controlled 98% of these weeds. Fluridone alone controlled 85% or more of black nightshade (Solanum nigrumL.). Fluridone did not alter cotton stand or yield. Fluridone residues 8 months after treatment reduced growth of several crops and weeds by 75% or more.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Alex G. Ogg ◽  
Jean H. Dawson

Under irrigated field conditions at Prosser, WA, Russian thistle [Salsola kali(L.) var.tenuifoliaTausch. ♯3SASKR] began to emerge by mid-March each year and usually had completed its emergence by May 1. Common lambsquarters (Chenopodium albumL. ♯ CHEAL) was the next to appear, usually during the third or fourth week of March. Barnyardgrass [Echinochloa crus-galli(L.) Beauv. ♯ ECHCG], redroot pigweed (Amaranthus retroflexusL. ♯ AMARE), hairy nightshade (Solarium sarrachoidesSendt. ♯ SOLSA), black nightshade (5.nigrumL. ♯ SOLNI), eastern black nightshade (S. ptycanthumDun.), and cutleaf nightshade (S. triflorumNutt. ♯ SOLTR) generally began to emerge during the first 2 weeks of April and emergence generally peaked mid-April to mid-May. Russian thistle and cutleaf nightshade had the most restricted emergence patterns, whereas seedlings of common lambsquarters, redroot pigweed, hairy nightshade, and black nightshade emerged each month from April through September. Shallow tillage at monthly intervals increased the overall emergence of common lambsquarters, redroot pigweed, black nightshade, and eastern black nightshade; decreased the emergence of barnyardgrass; and had no effect on the emergence of Russian thistle, cutleaf nightshade, or hairy nightshade.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 28-31 ◽  
Author(s):  
E. E. Schweizer

Dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) applied at 0.37 kg/ha controlled black nightshade (Solanum nigrumL.) better than did trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.56 kg/ha. Dinitramine applied at 0.37 kg/ha was equal to 0.56 kg/ha of trifluralin for control of green foxtail [Setaria viridis(L.) Beauv.], yellow foxtail [Setaria glauca(L.) Beauv.], and redroot pigweed (Amaranthus retroflexusL.). Dinitramine produced more root aberrations in sugarbeets (Beta vulgarisL. ‘Mono Hy D2′) than did trifluralin when sprayed on nonexposed or exposed hypotcotyledonary tissues of seedlings. When soil surrounded most of the hypocotyls at the time of application, 0.56 kg/ha of dinitramine affected 57 to 87% of the roots, whereas the same rate of trifluralin affected 1 to 8% of the roots. When the hypocotyls were exposed at the time of application, 100% of the roots were affected by dinitramine compared to 25% of all roots treated with trifluralin. Dinitramine applied at 0.37, 0.42, and 0.56 kg/ha lowered the quality and yield of sugarbeet roots, with the highest rate significantly reducing percentage purity, percentage sucrose, and recoverable sucrose. Trifluralin did not affect these parameters.


2016 ◽  
Vol 14 (3) ◽  
pp. e1005 ◽  
Author(s):  
Euro Pannacci

Four field experiments were carried out from 2011 to 2014 in order to evaluate the effects of foramsulfuron, applied at the recommended (60.8 g a.i./ha) and reduced doses (1/3 and 2/3), on the efficacy against several of the most important weeds in maize. For each “year-weed” combination, dose-response curves were applied to estimate the dose of foramsulfuron required to obtain 90% and 95% weed control (ED90 and ED95). Foramsulfuron phytotoxicity on maize and crop yield were assessed. Foramsulfuron at 1/3 of the recommended dose (20.3 g a.i./ha) provided 95% efficacy against redroot pigweed (Amaranthus retroflexus L.), green foxtail (Setaria viridis (L.) Beauv.), wild mustard (Sinapis arvensis L.) and black nightshade (Solanum nigrum L.). Velvetleaf (Abutilon theophrasti Medik.), common lambsquarters (Chenopodium album L.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv.) were satisfactorily controlled (95% weed efficacy) with ED95 ranged from 20 to 50 g/ha of foramsulfuron (about from 1/3 to 5/6 of the recommended dose) depending on growth stage. The recommended dose was effective against pale smartweed (Polygonum lapathifolium L.) at 2-4 true leaves (12-14 BBCH scale), but this dose did not kill plants larger than 2-4 true leaves. The ranking among weed species based on their susceptibility to foramsulfuron was: redroot pigweed = green foxtail = wild mustard = black nightshade > velvetleaf = common lambsquarters = barnyardgrass > pale smartweed. Dose of foramsulfuron can be reduced below recommended dose depending on weed species and growth stage. Foramsulfuron showed a good crop selectivity and had no negative effect on maize yield.


2014 ◽  
Vol 1 (2) ◽  
pp. 20-23
Author(s):  
O. Ivashchenko ◽  
O. Ivashchenko

Aim. Studying of black nightshade young plants’ response to the induced mechanical stresses. Methods. Researches conducted in small plot fi eld experiments. Results. Change of sensitivity level of Solanum nigrum L. plants depending on phases of their development at the moment of damage of elevated parts has been proven. Owing to loss of the surface capable to photosynthesis, there is an essential decrease in volumes of photosynthesis at plants of weed survived and their possibilities of ontogeny passage. The deep induced dis- stresses reduce biological effi ciency of plants, their ability to accumulate weight and to form seeds and even lead them to death. Conclusions. The defi ned principles of response of weed plants to the induced mechanical dis-stresses are can be used for working out and ecological receptions of crops protection from weeds.


1980 ◽  
Vol 60 (4) ◽  
pp. 1485-1488 ◽  
Author(s):  
S. I. WARWICK ◽  
S. E. WEAVER

Screening trials with the herbicide atrazine and a morphological examination of atrazine-resistant pigweed populations from southern Ontario and Washington state have established: (1) that the several resistant populations from the West Montrose area, Waterloo Co., Ontario and one from Washington state, previously reported as Amaranthus retroflexus, are, in fact, referable to A. powellii and (2) that the one resistant population near Ayr, Waterloo Co., Ontario, which had not been previously reported, is correctly identified as A. retroflexus. Features distinguishing the three pigweed taxa that are common in southern Ontario (A. powellii, A. retroflexus and A. hybridus) are reviewed.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 590-593 ◽  
Author(s):  
Stephane M. Mclachlan ◽  
Clarence J. Swanton ◽  
Stephan F. Weise ◽  
Matthijs Tollenaar

Leaf development and expansion are important factors in determining the outcome of crop-weed interference. The comparative effects of temperature and corn canopy-induced shading on the rate of leaf appearance (RLA) of redroot pigweed were quantified in this study. Growth cabinet results indicated a linear increase in RLA with increased temperature. Weed RLA was predicted utilizing both this function and field temperature data. The ratio of observed to predicted RLA of redroot pigweed grown in field experiments decreased in 1990 and 1991 as shading increased with increased corn density and delayed weed planting date. Results indicated that RLA is substantially affected by canopy-induced shading in addition to temperature.


Author(s):  

Abstract A new distribution map is provided for Tuta absoluta (Meyrick). Lepidoptera: Gelechiidae. Hosts: tomato (Solanum lycopersicum), potato (Solanum tuberosum), jimsonweed (Datura stramonium), tree tobacco (Nicotiana glauca) and black nightshade (Solanum nigrum). Information is given on the geographical distribution in Europe (France (Mainland France), Italy (Mainland Italy, Sardinia, Sicily), Netherlands, Spain (Balearic Islands, Mainland Spain)), Africa (Algeria, Morocco, Tunisia), South America (Argentina, Bolivia, Brazil (Bahia, Ceara Espirito Santo, Goias, Minas Gerais, Parana, Pernambuco, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, Sao Paulo), Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, Venezuela).


Sign in / Sign up

Export Citation Format

Share Document