scholarly journals Magnetic fields in limb solar flares on heights 2–14 Mm

Author(s):  
V. Lozitsky ◽  
I. Yakovkin ◽  
E. Kravchenko

We present the results of observations of two powerful limb solar flares which occured on 17 July 1981 and 14 July 2005. Spectral observations of these flares were carried out with the Echelle spectrograph of the Horizontal Solar Telescope of the Astronomical Observatory of Taras Shevchenko National University of Kyiv. In order to measure the magnetic fields in these flares, I ± V profiles of К СаІІ, HeI 4471.5 and Нα lines were studied. It was found that effective (averaged) magnetic field Вeff in the flares reached 1100–3000 G on heights 2–14 Mm. However, the spectral evidences to yet stronger fields of ~ 104 G range were found. In particular, the weak spectral evidences of large Zeeman splitting were found in first flare by HeI 4471.5 line; this evidences corresponds to superstrong magnetic field of 15.5 kG. In the second flare, Нα line has non-parallelism of bisectors of I ± V profiles which can reflect existence of 1550–3000 G fields in the flare. However, in frame of simple two-component model these observed values can correspond to true local (amplitude) magnetic fields Вmax in range 4.65–18 kG. Apparently, such superstrong magnetic fields arise in structures of a force-free type, with strong twisting of the field lines. It is precisely such field values that are necessary in solar flares for energy reasons. Indeed, solar flares emit energy in the range of 1027-1032 erg in a volume of the order of 1027 cm3. Elementary calculations show that in order to provide such energy in such a volume, the magnetic field strength should be at least 103 G. In addition, if we take into account that solar magnetic fields have the sub-telescopic (spatially unresolved) structure, then the local magnetic field intensities in the flares at the coronal level can be expected even higher.

2017 ◽  
Vol 13 (S336) ◽  
pp. 215-218
Author(s):  
Ciriaco Goddi ◽  
Gabriele Surcis

AbstractThe Turner-Welch Object in the W3(OH) high-mass star forming complex drives a synchrotron jet, which is quite exceptional for a high-mass protostar, and is associated with a strongly polarized water maser source, W3(H2O), making it an optimal target to investigate the role of magnetic fields on the innermost scales of protostellar disk-jet systems. We report here full polarimetric VLBA observations of water masers. The linearly polarized emission from water masers provides clues on the orientation of the local magnetic field, while the measurement of the Zeeman splitting from circular polarization provides its strength. By combining the information on the measured orientation and strength of the magnetic field with the knowledge of the maser velocities, we infer that the magnetic field evolves from having a dominant component parallel to the outflow velocity in the pre-shock gas (with field strengths of the order of a few tens of mG), to being mainly dominated by the perpendicular component (of order of a few hundred of mG) in the post-shock gas where the water masers are excited. The general implication is that in the undisturbed (i.e. not-shocked) circumstellar gas, the flow velocities would follow closely the magnetic field lines, while in the shocked gas the magnetic field would be re-configured to be parallel to the shock front as a consequence of gas compression.


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


1997 ◽  
Vol 166 ◽  
pp. 227-238
Author(s):  
Carl Heiles

AbstractThere are almost no direct observational indicators of the magnetic field inside the local bubble. Just outside the bubble, the best tracers are stellar polarization and HI Zeeman splitting. These show that the local field does not follow the large-scale Galactic field. Here we discuss whether the deformation of the large-scale field by the local HI shells is consistent with the observations. We concentrate on the Loop 1 region, and find that the field lines are well-explained by this idea; in addition, the bright radio filaments of Radio Loop 1 delineate particular field lines that are “lit up” by an excess of relativistic electrons.


2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


2008 ◽  
Vol 4 (S259) ◽  
pp. 551-552
Author(s):  
Hanna Kotarba ◽  
H. Lesch ◽  
K. Dolag ◽  
T. Naab ◽  
P. H. Johansson ◽  
...  

AbstractWe present a set of global, self-consistentN-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the codeVine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċB-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the codeGadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.


2020 ◽  
Vol 1 (2) ◽  
pp. 26-36
Author(s):  
Sergei Plachinda ◽  
Varvara Butkovskaya

A research on stellar magnetism in Crimea was initiated by pioneer works of A.B. Severny, V.E. Stepanov, and D.N. Rachkovsky. Today, the study of stellar magnetic fields is a key field of research at the Crimean Astrophysical Observatory (CrAO). The 2.6 m Shajn telescope equipped with the echelle spectrograph ESPL, CCD, and Stokesmeter (a circular polarization analyzer) allows us to study the magnetic field of bright stars up to 5m–6m. The Single Line (SL) technique is developed for measuring magnetic fields at CrAO. This technique is based on the calculation of the Zeeman effect in individual spectral lines. A key advantage of the SL technique is its ability to detect local magnetic fields on the surface of stars. Many results in the field of direct measurements of stellar magnetic fields were obtained at CrAO for the first time. In particular, the magnetic field on supergiants (ǫ Gem), as well as on a number of subgiants, giants, and bright giants was first detected. This, and investigations of other authors, confirmed the hypothesis that a magnetic field is generated at all the stages of evolution of late-type stars, including the stage of star formation. The emergence of large magnetic flux tubes at the surface of stars of V-IV-III luminosity classes (61 Cyg A, β Gem, β Aql) was first registered. In subgiants, the magnetic field behavior with the activity cycle was first established for β Aql. Using the long-term Crimean spectroscopic and spectropolarimetric observations of α Lyr, the 22-year variability cycle of the star, supposedly associated with meridional flows, is confirmed. Magnetic field variability with the pulsation period was first detected for different types of pulsating variables: the classical Cepheid β Aql, the low-amplitude β Cep-type variable γ Peg, and others. In this review we cover more than a half-century history of the formation of the Crimean scientific school for high-precision direct measurements of stellar magnetic fields.


1998 ◽  
Vol 184 ◽  
pp. 371-372
Author(s):  
B. Hutawarakorn ◽  
R. J. Cohen

Masers provide a direct way of measuring magnetic fields in star-forming regions. OH ground-state masers at 18 cm wavelength exhibit strong circular polarization due to Zeeman splitting. The implied magnetic field strength is typically a few mG, which is sufficient for the field to be dynamically important, e.g. in channelling the observed bipolar outflows. Moreover there are indications that magnetic fields in maser regions are aligned with the large-scale Galactic magnetic field (Reid & Silverstein 1990), and that bipolar molecular outflows are also aligned with the local Galactic magnetic field (Cohen, Rowland & Blair 1984). Some theoretical work in fact suggests that the magnetic field is intimately connected with the origin of the molecular outflow (e.g. Pudritz & Norman 1983; Uchida & Shibata 1985). It is therefore important to investigate the magnetic field configuration in these regions in as much detail as possible.


1988 ◽  
Vol 20 (1) ◽  
pp. 100-102
Author(s):  
G.E. Brueckner

The crucial role of magnetic fields in any mechanism to heat the outer solar atmosphere has been generally accepted by all authors. However, there is still no agreement about the detailed function of the magnetic field. Heating mechanisms can be divided up into 4 classes: (I) The magnetic field plays a passive role as a suitable medium for the propagation of Alfvén waves from the convection zone into the corona (Ionson, 1984). (II) In closed magnetic structures the slow random shuffling of field lines by convective motions below the surface induces electric currents in the corona which heat it by Joule dissipation (Heyvaerts and Priest, 1984). (Ill) Emerging flux which is generated in the convection zone reacts with ionized material while magnetic field lines move through the chromosphere, transition zone and corona. Rapid field line annihilation, reconnection and drift currents result in heating and material ejection (Brueckner, 1987; Brueckner et al., 1987; Cook et al., 1987). (IV) Acoustic waves which could heat the corona can be guided by magnetic fields. Temperature distribution, wave motions and shock formation are highly dependent on the geometry of the flux tubes (Ulmschneider and Muchmore, 1986; Ulmschneider, Muchmore and Kalkofen, 1987).


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2566-2572 ◽  
Author(s):  
O. E. RAICHEV

The influence of magnetic fields on the electron spin in solids involves two basic mechanisms. First, any magnetic field introduces the Zeeman splitting of electron states, thereby modifying spin precession. Second, since the magnetic field affects the electron motion in the plane perpendicular to the field, the spin dynamics is also modified, owing to the spin-orbit interaction. The theory predicts, as a consequence of this influence, unusual properties of the intrinsic spin-Hall effect in two-dimensional systems in the presence of magnetic fields. This paper describes non-monotonic dependence of the spin-Hall conductivity on the magnetic field and its enhancement in the case of weak disorder, as well as multiple jumps of the spin-Hall conductivity owing to the topological transitions (abrupt changes of the Berry phase) induced by the parallel magnetic field.


Sign in / Sign up

Export Citation Format

Share Document