scholarly journals Virtual and spurious surface structure on Ap stars

1996 ◽  
Vol 176 ◽  
pp. 61-68 ◽  
Author(s):  
M.J. Stift

Modelling of magnetic Ap type stars has a long and distinguished history. The Oblique Rotator Model (ORM) – a dipole inside the star, its axis not aligned with the rotation axis – proposed by Babcock (1949a) provides a simple yet flexible enough paradigm for the modelling both of the magnetic and the spectral line variations of these stars. Deutsch (1958) developed a method to derive surface composition distributions from magnetic field measurements in conjunction with line strength variations but subsequent investigators concentrated either on the magnetic field or on the abundance distributions. Hardly ever was the question of consistency between field and composition mapping addressed – Landstreet (1988) constitutes the exception. In abundance mapping, Doppler imaging (Vogt et al. 1987) has meanwhile replaced most other approaches and is credited with fairly reliable results. But can one really carry out such mapping, as done by Hatzes (these proceedings) without accounting for the magnetic field and can these zero-field abundance maps and their relation to the magnetic configuration be compared to the predictions of diffusion theory? Did Landstreet ever have a real chance of disentangling magnetic and abundance effects using intensity (Stokes I) profiles only? What is the probability of obtaining spurious surface structure from intensity Doppler imaging of Ap stars?

1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


2020 ◽  
Vol 633 ◽  
pp. A48 ◽  
Author(s):  
C. P. Folsom ◽  
D. Ó Fionnagáin ◽  
L. Fossati ◽  
A. A. Vidotto ◽  
C. Moutou ◽  
...  

Context. 55 Cancri hosts five known exoplanets, most notably the hot super-Earth 55 Cnc e, which is one of the hottest known transiting super-Earths. Aims. Because of the short orbital separation and host star brightness, 55 Cnc e provides one of the best opportunities for studying star-planet interactions (SPIs). We aim to understand possible SPIs in this system, which requires a detailed understanding of the stellar magnetic field and wind impinging on the planet. Methods. Using spectropolarimetric observations and Zeeman Doppler Imaging, we derived a map of the large-scale stellar magnetic field. We then simulated the stellar wind starting from the magnetic field map, using a 3D magneto-hydrodynamic model. Results. The map of the large-scale stellar magnetic field we derive has an average strength of 3.4 G. The field has a mostly dipolar geometry; the dipole is tilted by 90° with respect to the rotation axis and the dipolar strength is 5.8 G at the magnetic pole. The wind simulations based on this magnetic geometry lead us to conclude that 55 Cnc e orbits inside the Alfvén surface of the stellar wind, implying that effects from the planet on the wind can propagate back to the stellar surface and result in SPI.


1993 ◽  
Vol 139 ◽  
pp. 134-134
Author(s):  
H. Shibahashi ◽  
M. Takata

Recently, one of the rapidly oscillating Ap stars, HR 3831, has been found to have an equally split frequency septuplet, though its oscillation seems to be essentially an axisymmetric dipole mode with respect to the magnetic axis which is oblique to the rotation axis (Kurtz et al. 1992; Kurtz 1992). In order to explain this fine structure, we investigate oscillations of obliquely rotating magnetic stars by taking account of the perturbations due to the magnetic fields and the rotation. We suppose that the star is rigidly rotating and that the magnetic field is a dipole field and its axis is oblique to the rotation axis. We treat the effects of the rotation and of the magnetic field as perturbations. In doing so, we suppose that the rotation of the star is slow enough so that the effect of the rotation on oscillations is smaller than that of the magnetic field.


2013 ◽  
Vol 9 (S302) ◽  
pp. 290-299
Author(s):  
Oleg Kochukhov

AbstractStars with radiative envelopes, specifically the upper main sequence chemically peculiar (Ap) stars, were among the first objects outside our solar system for which surface magnetic fields have been detected. Currently magnetic Ap stars remains the only class of stars for which high-resolution measurements of both linear and circular polarization in individual spectral lines are feasible. Consequently, these stars provide unique opportunities to study the physics of polarized radiative transfer in stellar atmospheres, to analyze in detail stellar magnetic field topologies and their relation to starspots, and to test different methodologies of stellar magnetic field mapping. Here I present an overview of different approaches to modeling the surface fields in magnetic A- and B-type stars. In particular, I summarize the ongoing efforts to interpret high-resolution full Stokes vector spectra of these stars using magnetic Doppler imaging. These studies reveal an unexpected complexity of the magnetic field geometries in some Ap stars.


2008 ◽  
Vol 4 (S259) ◽  
pp. 403-404 ◽  
Author(s):  
James Silvester ◽  
O. Kochukhov ◽  
G. A. Wade ◽  
N. Piskunov ◽  
J. D. Landstreet ◽  
...  

AbstractWe will introduce a project using Magnetic Doppler Imaging (MDI) to create assumption-free vector magnetic field maps and chemical surface structure maps of chemically peculiar A and B type (or Ap) stars. We are exploiting the latest generation of spectropolarimeters (NARVAL at the Pic du Midi observatory, and ESPaDOnS at the Canada-France-Hawaii telescope), to obtain high-resolution time series of Stokes IQUV spectra of a selection of Ap stars. The spectra have superior signal-to-noise ratio, resolution and wavelength coverage to those used previously. This combined with the ground-breaking inversion techniques introduced by Kochukhov et al. (2002) results in maps which represent the state-of-the-art in the field of stellar cartography. These maps will allow us to better understand the links between the magnetic field and the physical processes leading to the formation of chemical structures in the photosphere and allow us to address questions surrounding the detailed magnetic field geometry of Ap stars.


1996 ◽  
Vol 176 ◽  
pp. 305-320 ◽  
Author(s):  
Artie P. Hatzes

Doppler imaging results for the surface abundance distribution on Ap stars are reviewed. The silicon distribution on these stars is often characterized by depleted spots near the magnetic poles and enhancements in ring-like structures at intermediate magnetic latitudes. These results are consistent with the predictions of diffusion theory. On two stars, γ Ari and CU Vir, the silicon enhancements appear very close to a magnetic pole. This can be explained if silicon is enhanced where the magnetic field has its maximum horizontal field strength and these stars possess a decentered dipole field. Doppler images of abundance distributions on Ap stars may be used to accurately measure the obliquity angle and to estimate the decentering parameter for a dipole field. The chromium distribution on at least four Ap stars show a depleted band coincident with the magnetic equator and depleted spots at the magnetic poles. Such a distribution can only arise if the star has a predominantly quadrupole field, or if horizontal diffusion is playing a role in the distribution of elements.


2021 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

The applicability of magnetocaloric materials is limited by irreversibility. In this work, we evaluate the reversible magnetocaloric response associated with magnetoelastic transitions in the framework of the Bean-Rodbell model. This model allows the description of both second- and first-order magnetoelastic transitions by the modification of the η parameter (η<1 for second-order and η>1 for first-order ones). The response is quantified via the Temperature-averaged Entropy Change (TEC), which has been shown to be an easy and effective figure of merit for magnetocaloric materials. A strong magnetic field dependence of TEC is found for first-order transitions, having a significant increase when the magnetic field is large enough to overcome the thermal hysteresis of the material observed at zero field. This field value, as well as the magnetic field evolution of the transition temperature, strongly depend on the atomic magnetic moment of the material. For a moderate magnetic field change of 2 T, first-order transitions with η≈1.3−1.8 have better TEC than those corresponding to stronger first-order transitions and even second-order ones.


1972 ◽  
Vol 50 (2) ◽  
pp. 116-118 ◽  
Author(s):  
C. W. T. Chien ◽  
R. E. Bardsley ◽  
F. W. Dalby

Zero-field level-crossing techniques have been used to measure some upper-state lifetimes of the helium atom. The half-widths of curves obtained by plotting the polarization against the magnetic field strength for the n1D–21D transitions yielded lifetimes of 2.03 × 10−8 s for the 31D state, 3.36 × 10−8 s for the 41D state, and 7.44 × 10−8 s for the 51D state. Collision cross sections for these 1D levels were also determined.


2020 ◽  
Vol 633 ◽  
pp. A87 ◽  
Author(s):  
L. Griton ◽  
F. Pantellini

Context. As proven by measurements at Uranus and Neptune, the magnetic dipole axis and planetary spin axis can be off by a large angle exceeding 45°. The magnetosphere of such an (exo-)planet is highly variable over a one-day period and it does potentially exhibit a complex magnetic tail structure. The dynamics and shape of rotating magnetospheres do obviously depend on the planet’s characteristics but also, and very substantially, on the orientation of the planetary spin axis with respect to the impinging, generally highly supersonic, stellar wind. Aims. On its orbit around the Sun, the orientation of Uranus’ spin axis with respect to the solar wind changes from quasi-perpendicular (solstice) to quasi-parallel (equinox). In this paper, we simulate the magnetosphere of a fictitious Uranus-like planet plunged in a supersonic plasma (the stellar wind) at equinox. A simulation with zero wind velocity is also presented in order to help disentangle the effects of the rotation from the effects of the supersonic wind in the structuring of the planetary magnetic tail. Methods. The ideal magnetohydrodynamic (MHD) equations in conservative form are integrated on a structured spherical grid using the Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). In order to limit diffusivity at grid level, we used background and residual decomposition of the magnetic field. The magnetic field is thus made of the sum of a prescribed time-dependent background field B0(t) and a residual field B1(t) computed by the code. In our simulations, B0(t) is essentially made of a rigidly rotating potential dipole field. Results. The first simulation shows that, while plunged in a non-magnetised plasma, a magnetic dipole rotating about an axis oriented at 90° with respect to itself does naturally accelerate the plasma away from the dipole around the rotation axis. The acceleration occurs over a spatial scale of the order of the Alfvénic co-rotation scale r*. During the acceleration, the dipole lines become stretched and twisted. The observed asymptotic fluid velocities are of the order of the phase speed of the fast MHD mode. In two simulations where the surrounding non-magnetised plasma was chosen to move at supersonic speed perpendicularly to the rotation axis (a situation that is reminiscent of Uranus in the solar wind at equinox), the lines of each hemisphere are symmetrically twisted and stretched as before. However, they are also bent by the supersonic flow, thus forming a magnetic tail of interlaced field lines of opposite polarity. Similarly to the case with no wind, the interlaced field lines and the attached plasma are accelerated by the rotation and also by the transfer of kinetic energy flux from the surrounding supersonic flow. The tailwards fluid velocity increases asymptotically towards the externally imposed flow velocity, or wind. In one more simulation, a transverse magnetic field, to both the spin axis and flow direction, was added to the impinging flow so that magnetic reconnection could occur between the dipole anchored field lines and the impinging field lines. No major difference with respect to the no-magnetised flow case is observed, except that the tailwards acceleration occurs in two steps and is slightly more efficient. In order to emphasise the effect of rotation, we only address the case of a fast-rotating planet where the co-rotation scale r* is of the order of the planetary counter-flow magnetopause stand-off distance rm. For Uranus, r*≫ rm and the effects of rotation are only visible at large tailwards distances r ≫ rm.


1993 ◽  
Vol 139 ◽  
pp. 132-132
Author(s):  
G. Mathys

Magnetic field appears to play a major role in the pulsations of rapidly oscillating Ap (roAp) stars. Understanding of the behaviour of these objects thus requires knowledge of their magnetic field. Such knowledge is in particular essential to interpret the modulation of the amplitude of the photometric variations (with a frequency very close to the rotation frequency of the star) and to understand the driving mechanism of the pulsation. Therefore, a systematic programme of study of the magnetic field of roAp stars has been started, of which preliminary (and still very partial) results are presented here.Magnetic fields of Ap stars can be diagnosed from the Zeeman effect that they induced in spectral lines either from the observation of line-splitting in high-resolution unpolarized spectra (which only occurs in favourable circumstances) or from the observation of circular polarization of the lines in medium- to high-resolution spectra.


Sign in / Sign up

Export Citation Format

Share Document