scholarly journals Slow Rotation of Gas in the Halos of Edge-on Galaxies M82 and NGC 4631

1991 ◽  
Vol 144 ◽  
pp. 307-308
Author(s):  
Y. Sofue ◽  
N. Nakai ◽  
T. Handa ◽  
G. Golla ◽  
H.-P. Reuter ◽  
...  

The rotation velocity of molecular gas in the halos of M82 and NGC4631 decreases with the height from the galactic plane. The slower rotation of halo gas can be explained if the gas is supplied from the central region of the galaxies due to some ejection.

2009 ◽  
Vol 5 (S267) ◽  
pp. 405-405
Author(s):  
Rogemar A. Riffel ◽  
Thaisa Storchi-Bergmann

Previous studies of the central region of active galaxies show that the molecular and ionized gas have distinct kinematics and flux distributions, with the former dominated by quiescent kinematics characteristic of rotation in the galactic plane and the latter with more disturbed kinematics and apparently extending to larger galactic latitudes. These results suggest that the molecular gas can be a tracer of the feeding of the AGN and the ionized gas a tracer of its feedback (e.g., Riffel et al. 2009, 2008, 2006; Storchi-Bergmann et al. 2009a, b). In the present study we use Gemini NIFS integral field observations of the inner 700×700 pc2 of the Seyfert galaxy Mrk 1066 at a spatial resolution of ~ 35 pc to investigate if the above scenario is also valid for this galaxy.


1987 ◽  
Vol 115 ◽  
pp. 614-620
Author(s):  
N. Nakai ◽  
M. Hayashi ◽  
T. Hasegawa ◽  
Y. Sofue ◽  
T. Handa ◽  
...  

The CO (J=1-0) emission in M82 has been mapped with the Nobeyama 45-m telescope. The CO intensity distribution in the central region is resolved into two peaks. An axisymmetric model reveals a ring structure of molecular gas at a distance of 80-400 pc (centered near 200 pc) from the nucleus. This “200-pc ring” corresponds to just the region of a star formation burst. The molecular gas in M82 is also expanding out of the galactic plane with a velocity of 100-500 km s−1. The expansion energy of (0.1-1.4) x 1056 erg can be explained by the energy supply of supernovae in the central region.


1974 ◽  
Vol 60 ◽  
pp. 539-547 ◽  
Author(s):  
J. H. Oort

The phenomena displayed by the interstellar medium in the galactic centre are considered. The asymmetries shown by the features between 1 and 3 kpc from the centre together with the presence of material lying out of the galactic plane favour the expulsion hypothesis for their origin. The nuclear disk shows a perturbation which might have resulted from such expulsion. The dense molecular clouds in the disk may well be considered as the most direct evidence that matter is expelled from the nucleus and that this occurs at a high rate. The +50 km s-1 feature in the direction of Sgr A may be the most recently expelled body of molecular gas. New observations of the central radio source, Sgr A, have revealed details on a very small scale, and the infrared core also shows a complicated structure. Probably a number of individual concentrations of gas and dust are present. While the position of the actual nucleus seems now to have been defined to within a few arcseconds, no indication has yet been found concerning its nature nor concerning the mechanism that enables it to expel the vast expanding masses of gas observed in the central region.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


1976 ◽  
Vol 32 ◽  
pp. 675-683
Author(s):  
Keiichi Kodaira

SummaryExcess of [m1] index of Am stars, relative to normal stars, is statistically found to be correlated with rotation velocity; the coefficient is estimated at ∆׀m1׀ /∆V(km/sec) ˜ - 0.0007 among Am stars. This result supports the general view that slow rotation is essential for Am phenomena.


2018 ◽  
Vol 615 ◽  
pp. A122 ◽  
Author(s):  
S. König ◽  
S. Aalto ◽  
S. Muller ◽  
J. S. Gallagher III ◽  
R. J. Beswick ◽  
...  

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound – about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales – from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1−0 with NOEMA and of CO3−2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1′′ resolution. In particular, we compare the distribution of these dense gas tracers with CO2−1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1−0, and CO3−2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the “Eye of the Medusa”, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO+ is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO3−2/2−1 brightness temperature ratio inside “the Eye” is ~2.5 – the highest ratio found so far – implying optically thin CO emission. The CO2−1/HCN 1−0 (~9.8) and CO2−1/HCO+ 1−0 (~7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO3−1/2−1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H2) > 104 cm-3). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form newstars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.


2021 ◽  
Vol 922 (2) ◽  
pp. L29
Author(s):  
Jianrui Li ◽  
Bjorn H. C. Emonts ◽  
Zheng Cai ◽  
J. Xavier Prochaska ◽  
Ilsang Yoon ◽  
...  

Abstract The link between the circumgalactic medium (CGM) and the stellar growth of massive galaxies at high-z depends on the properties of the widespread cold molecular gas. As part of the SUPERCOLD-CGM survey (Survey of Protocluster ELANe Revealing CO/[C i] in the Lyα-Detected CGM), we present the radio-loud QSO Q1228+3128 at z = 2.2218, which is embedded in an enormous Lyα nebula. ALMA+ACA observations of CO(4–3) reveal both a massive molecular outflow, and a more extended molecular gas reservoir across ∼100 kpc in the CGM, each containing a mass of M H2 ∼ 4–5 × 1010 M ⊙. The outflow and molecular CGM are aligned spatially, along the direction of an inner radio jet. After reanalysis of Lyα data of Q1228+3128 from the Keck Cosmic Web Imager, we found that the velocity of the extended CO agrees with the redshift derived from the Lyα nebula and the bulk velocity of the massive outflow. We propose a scenario where the radio source in Q1228+3128 is driving the molecular outflow and perhaps also enriching or cooling the CGM. In addition, we found that the extended CO emission is nearly perpendicular to the extended Lyα nebula spatially, indicating that the two gas phases are not well mixed, and possibly even represent different phenomena (e.g., outflow versus infall). Our results provide crucial evidence in support of predicted baryonic recycling processes that drive the early evolution of massive galaxies.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Hiroyuki Nakanishi ◽  
Shinji Fujita ◽  
Kengo Tachihara ◽  
Natsuko Izumi ◽  
Mitsuhiro Matsuo ◽  
...  

ABSTRACT We analyze molecular-gas formation in neutral atomic hydrogen (H i) clouds using the latest CO data, obtained from the FOREST (four-beam receiver system on the 45 m telescope) unbiased Galactic plane imaging survey with the Nobeyama 45 m telescope, and using H i data taken from the Very Large Array Galactic plane survey. We applied a dendrogram algorithm to the H i data cube to identify H i clouds, and we calculated the H i mass and molecular-gas mass by summing the CO line intensity within each H i cloud. On the basis of the results, we created a catalog of 5737 identified H i clouds with local standard of rest (LSR) velocity of VLSR ≤ −20 km s−1 in galactic longitude and latitude ranges of 20° ≤ l ≤ 50° and −1° ≤ b ≤ 1°, respectively. We found that most of the H i clouds are distributed within a Galactocentric distance of 16 kpc, and most of them are in the cold neutral medium phase. In addition, we determined that the high-mass end of the H i mass function is fitted well with a power-law function with an index of 2.3. Although two sequences of self-gravitating and diffuse clouds are expected to appear in the M tot–$M_{\,{\rm H}_2}$ diagram according to previous works based on a plane-parallel model, the observational data show only a single sequence with large scattering within these two sequences. This implies that most of the clouds are mixtures of these two types of clouds. Moreover, we suggest the following scenario of molecular-gas formation: an H i-dominant cloud evolved with increasing H2 mass along a path of $M_{\,{\rm H}_2} \propto M_{\,\rm tot}^2$ by collecting diffuse gas before reaching and moving along the curves of the two sequences.


2017 ◽  
Vol 13 (S336) ◽  
pp. 176-179
Author(s):  
K. Immer ◽  
M. Reid ◽  
A. Brunthaler ◽  
K. Menten ◽  
Q. Zhang ◽  
...  

AbstractThe Central Molecular Zone (CMZ), the inner 450 pc of our Galaxy, is an exceptional region where the volume and column densities, gas temperatures, velocity dispersions, etc. are much higher than in the Galactic plane. It has been suggested that the formation of stars and clusters in this area is related to the orbital dynamics of the gas. The complex kinematic structure of the molecular gas was revealed by spectral line observations. However, these results are limited to the line-of-sight-velocities. To fully understand the motions of the gas within the CMZ, we have to know its location in 6D space (3D location + 3D motion). Recent orbital models have tried to explain the inflow of gas towards and its kinematics within this region. With parallax and proper motion measurements of masers in the CMZ we can discriminate among these models and constrain how our Galactic Center is fed with gas.


Author(s):  
M. B. Areal ◽  
S. Paron ◽  
M. E. Ortega ◽  
L. Duvidovich

Abstract Nowadays, there are several observational studies about the 13CO/C18O abundance ratio ( $X^{13/18}$ ) towards nearby molecular clouds. These works give observational support to the C18O selective photodissociation due to the interaction between the far ultraviolet (FUV) radiation and the molecular gas. It is necessary to increase the sample of molecular clouds located at different distances and affected in different ways by nearby or embedded H ii regions and OB associations to study the selective photodissociation. Using 12CO, 13CO, and C18O J = 1–0 data obtained from the FOREST unbiased Galactic plane imaging survey performed with the Nobeyama 45-m telescope, we analyse the filamentary infrared dark cloud IRDC $34.43+0.24$ located at the distance of about 3.9 kpc. This infrared dark cloud (IRDC) is related to several H ii regions and young stellar objects. Assuming local thermodynamic equilibrium, we obtain: $0.8 \times 10^{16} <$ N(13CO) $<4 \times 10^{17}$ cm–2 (average value $= 4.2 \times 10^{16}$ cm–2), $0.6 \times 10^{15} <$ N(C18O) $<4.4 \times 10^{16}$ cm–2 (average value $= 5.0 \times 10^{15}$ cm–2), and 3 $<$ $X^{13/18}$ $<$ 30 (average $= 8$ ) across the whole IRDC. Larger values of $X^{13/18}$ were found towards portions of the cloud related to the H ii regions associated with the N61 and N62 bubbles and with the photodissociation regions, precisely the regions in which FUV photons are strongly interacting with the molecular gas. Our result represents an observational support to the C18O selectively photodissociation phenomenon occurring in a quite distant filamentary IRDC. Additionally, based on IR data from the Hi-GAL survey, the FUV radiation field was estimated in Habing units, and the dust temperature (T $_{dust}$ ) and H2 column density (N(H2)) distribution were studied. Using the average of N(H2), values in close agreement with the ‘canonical’ abundance ratios [H2]/[13CO] and [H2]/[C18O] were derived. However, the obtained ranges in the abundance ratios show that if an accurate analysis of the molecular gas is required, the use of the ‘canonical’ values may introduce some bias. Thus, it is important to consider how the gas is irradiated by the FUV photons across the molecular cloud. The analysis of $X^{13/18}$ is a good tool to perform that. Effects of beam dilution and clumpiness were studied.


Sign in / Sign up

Export Citation Format

Share Document