scholarly journals Stellar chemical evolution

1997 ◽  
Vol 189 ◽  
pp. 407-416
Author(s):  
John E. Norris

One of the major achievements of astrophysics has been the demonstration that most of the chemical elements have been synthesized in stars: nucleosynthesis calculations of homogeneous and inhomogeneous big bang cosmologies show that, in comparison with the most metal-poor stars currently known, essentially no elements heavier than B existed at the era of decoupling (see e.g. Wagoner, Fowler, & Hoyle 1967; Kajino, Mathews, & Fuller 1990). Following the pioneering work on stellar nucleosynthesis by Hoyle (1946), the basic precepts and the role of stars was set down in the classic papers of Burbidge et al. (1957) and Cameron (1957), and the ensuing decades have produced a vast body of theoretical and observational effort to more fully understand the details of the process.

Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 71-80 ◽  
Author(s):  
Anna Frebel

The chemical elements are created in nuclear fusion processes in the hot and dense cores of stars. The energy generated through nucleosynthesis allows stars to shine for billions of years. When these stars explode as massive supernovae, the newly made elements are expelled, chemically enriching the surrounding regions. Subsequent generations of stars are formed from gas that is slightly more element-enriched than that from which previous stars formed. This chemical evolution can be traced back to its beginning soon after the Big Bang by studying the oldest and most metal-poor stars still observable in the Milky Way today. Through chemical analysis, they provide the only available tool for gaining information about the nature of the short-lived first stars and their supernova explosions more than thirteen billion years ago. These events set in motion the transformation of the pristine universe into a rich cosmos of chemically diverse planets, stars, and galaxies.


Author(s):  
G. John Ikenberry

The end of the Cold War was a “big bang” reminiscent of earlier moments after major wars, such as the end of the Napoleonic Wars in 1815 and the end of the world wars in 1919 and 1945. But what do states that win wars do with their newfound power, and how do they use it to build order? This book examines postwar settlements in modern history, arguing that powerful countries do seek to build stable and cooperative relations, but the type of order that emerges hinges on their ability to make commitments and restrain power. The book explains that only with the spread of democracy in the twentieth century and the innovative use of international institutions—both linked to the emergence of the United States as a world power—has order been created that goes beyond balance of power politics to exhibit “constitutional” characteristics. Blending comparative politics with international relations, and history with theory, the book will be of interest to anyone concerned with the organization of world order, the role of institutions in world politics, and the lessons of past postwar settlements for today.


2020 ◽  
Vol 42 (2) ◽  
pp. 18-21
Author(s):  
Juris Meija ◽  
Javier Garcia-Martinez ◽  
Jan Apotheker

AbstractIn 2019, the world celebrated the International Year of the Periodic Table of Chemical Elements (IYPT2019) and the IUPAC centenary. This happy coincidence offered a unique opportunity to reflect on the value and work that is carried out by IUPAC in a range of activities, including chemistry awareness, appreciation, and education. Although IUPAC curates the Periodic Table and oversees regular additions and changes, this icon of science belongs to the world. With this in mind, we wanted to create an opportunity for students and the general public to participate in this global celebration. The objective was to create an online global competition centered on the Periodic Table and IUPAC to raise awareness of the importance of chemistry in our daily lives, the richness of the chemical elements, and the key role of IUPAC in promoting chemistry worldwide. The Periodic Table Challenge was the result of this effort.


2021 ◽  
Vol 20 (2) ◽  
pp. 142-149
Author(s):  
Avnish Kumar Arora ◽  
Pankaj Kumar

AbstractStudies on the interaction of biomolecules with inorganic compounds, mainly mineral surfaces, are of great concern in identifying their role in chemical evolution and origins of life. Metal oxides are the major constituents of earth and earth-like planets. Hence, studies on the interaction of biomolecules with these minerals are the point of concern for the study of the emergence of life on different planets. Zirconium oxide is one of the metal oxides present in earth's crust as it is a part of several types of rocks found in sandy areas such as beaches and riverbeds, e.g. pebbles of baddeleyite. Different metal oxides have been studied for their role in chemical evolution but no studies have been reported about the role of zirconium oxide in chemical evolution and origins of life. Therefore, studies were carried out on the interaction of ribonucleic acid constituents, 5′-CMP (cytidine monophosphate), 5′-UMP (uridine monophosphate), 5′-GMP (guanosine monophosphate) and 5′-AMP (adenosine monophosphate), with zirconium oxide. Synthesized zirconium oxide particles were characterized by using vibrating sample magnetometer, X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. Zirconia particles were in the nanometre range, from 14 to 27 nm. The interaction of zirconium oxide with ribonucleic acid constituents was performed in the concentration range of 5 × 10−5–300 × 10−5 M. Interaction studies were carried out in three mediums; acidic (pH 4.0), neutral (pH 7.0) and basic (pH 9.0). At neutral pH, maximum interaction was observed. The interaction of zirconium oxide with 5′-UMP was 49.45% and with 5′-CMP 67.98%, while with others it was in between. Interaction studies were Langmurian in nature. Xm and KL values were calculated. Infrared spectral studies of ribonucleotides, metal oxide and ribonucleotide–metal oxide adducts were carried out to find out the interactive sites. It was observed that the nitrogen base and phosphate moiety of ribonucleotides interact with the positive charge surface of metal oxide. SEM was also carried out to study the adsorption. The results of the present study favour the important role of zirconium oxide in concentrating the organic molecules from their dilute aqueous solutions in primeval seas.


1986 ◽  
Vol 128 (1) ◽  
pp. 17-31 ◽  
Author(s):  
J. M. Greenberg
Keyword(s):  

2011 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D.C. Hoffman

AbstractThis year (2009) marks the 140th Anniversary of Mendeleev's original 1869 periodic table of the elements based on atomic weights. It also marks the 175th anniversary of his birth in Tolbosk, Siberia. The history of the development of periodic tables of the chemical elements is briefly reviewed beginning with the presentation by Dmitri Mendeleev and his associate Nikolai Menshutkin of their original 1869 table based on atomic weights. The value, as well as the sometimes negative effects, of periodic tables in guiding the discovery of new elements based on their predicted chemical properties is assessed. It is noteworthy that the element with Z=101 (mendelevium) was identified in 1955 using chemical techniques. The discoverers proposed the name mendelevium to honor the predictive power of the Mendeleev Periodic Table. Mendelevium still remains the heaviest element to have been identified first by chemical rather than nuclear or physical techniques. The question concerning whether there will be a future role for the current form of the periodic table in predicting chemical properties and aid in the identification of elements beyond those currently known is considered.


2005 ◽  
Vol 34 (8) ◽  
pp. 691 ◽  
Author(s):  
Enrique Maciá
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document