scholarly journals Kinematic signatures of triaxial stellar systems

1993 ◽  
Vol 153 ◽  
pp. 407-408
Author(s):  
Richard Arnold ◽  
Tim De Zeeuw ◽  
Chris Hunter

Analytic dynamic models of triaxial stellar systems, such as elliptical galaxies and galactic bulges, can be used to calculate the velocity fields of systems in a wide range of potentials without the need for orbit integrations. We present results from a first application of these models, in the form of velocity fields projected onto the sky. The appearance of the velocity field depends strongly on the viewing angle. Thin orbit models provide a theoretical upper limit to streaming in all possible kinematic models in a given potential.

1993 ◽  
Vol 153 ◽  
pp. 273-274
Author(s):  
D. Friedli ◽  
S. Udry

Depending on the nature of the various components (stars, gas) present in triaxial stellar systems (elliptical galaxies, bulges and bars), the dynamics is expected to be rather different. The stars are collisionless, dissipationless, and dynamically hot; they are mainly trapped by quasi-periodic or chaotic orbits. On the contrary, the gas is collisional, dissipational, and dynamically cold; the cold or warm gas (≲ 104 K) is a powerful orbital tracer, however shocks prevent it from following self-crossing orbits. The hot gas (≲ 106 K) is influenced by “repulsive” pressure forces which prevent in close encounters the flow from being strongly shocked; it rather follows chaotic trajectories. By means of fully self-consistent 3D simulations with stars and gas using PM (Pfenniger & Friedli 1992) and SPH (Friedli & Benz 1992) techniques, we investigate the response of gaseous components in the following situations: 1) slow or fast pattern speed Ωp, 2) direct or retrograde gas motion with respect to the stars, and 3) warm or hot gas temperature T. Initial parameters and final characteristics of each runs are reported in Table I.


1988 ◽  
Vol 11 ◽  
pp. 211-211
Author(s):  
P. L. Vorriberger ◽  
I. M. Whillans

Crevasses are subject to rotation and bending according to the velocity field through which they travel. The objective of this study is to determine to what extent the velocity field can be inferred from measurements of the resulting shapes of crevasses.A quantitative model of crevasse deformation is developed, based on the following assumptions: (1) each crevasse is assumed to open perpendicularly to the principal extensional regional strain-rate, (2) the crevasse forms when the principal extensional strain-rate exceeds some specified critical value, and (3) velocity gradients are constant over the area of interest. The first two assumptions are reasonable and the third is necessary for an analytic solution of flow trajectories. The crevasse is carried along, rotated, and bent, and may continue to increase in length. Calculations are made for different velocity fields, and velocity fields are sought that produce crevasses similar to those found in three different areas of Ice Stream B.Hook-shaped crevasses occur just outside the chaotic zone at the ice-stream margin. These are similar to the curved marginal crevasses often found in the accumulation zone of valley glaciers. They are successfully modelled by combining strong lateral shear with slow flow of ice from the ice ridge into the ice stream. The curvature at the most sharply bent part of the crevasse is found to be a useful measure and, together with measurements of ice flow from the ridge, can be used to infer the rate of lateral shear. This rate compares favorably with the single measurement obtained so far (Bindschadler and others 1987).A pattern of splaying crevasses develops on the ice stream down-glacier of its narrowest part. These crevasses are similar to longitudinal crevasses found in the ablation zone of many valley glaciers. Models with linear variation in velocity cannot reproduce the observed pattern. However, we have been able to simulate higher-order variations by joining together successive linear models. The observed crevasse pattern is successfully produced if the side shearing varies as the third power of distance from the center of symmetry of the crevasse pattern. Such a variation is expected for a linear gradient in side-drag stress and a third-power constitutive relation for ice. The observed crevasse pattern is thus consistent with side drag varying linearly across the ice stream.The third example is the rotation of transverse crevasses, which occur in trains on the main part of the ice stream. This rotation is due to side shearing but its magnitude is also affected by turning of the flow line and by normal strain-rates. It is therefore possible to reproduce the observed pattern for a wide range of velocity fields, and so measurements of the orientation of transverse crevasses provide only an upper limit on side shearing within the main body of the ice stream.There are many other examples of crevasse patterns on Ice Stream Β and on other glaciers that can be studied in this way. We propose that important constraints can be placed on velocity gradients and on the flow dynamics by using quantitative modelling of crevasse shapes.


1988 ◽  
Vol 11 ◽  
pp. 211
Author(s):  
P. L. Vorriberger ◽  
I. M. Whillans

Crevasses are subject to rotation and bending according to the velocity field through which they travel. The objective of this study is to determine to what extent the velocity field can be inferred from measurements of the resulting shapes of crevasses. A quantitative model of crevasse deformation is developed, based on the following assumptions: (1) each crevasse is assumed to open perpendicularly to the principal extensional regional strain-rate, (2) the crevasse forms when the principal extensional strain-rate exceeds some specified critical value, and (3) velocity gradients are constant over the area of interest. The first two assumptions are reasonable and the third is necessary for an analytic solution of flow trajectories. The crevasse is carried along, rotated, and bent, and may continue to increase in length. Calculations are made for different velocity fields, and velocity fields are sought that produce crevasses similar to those found in three different areas of Ice Stream B. Hook-shaped crevasses occur just outside the chaotic zone at the ice-stream margin. These are similar to the curved marginal crevasses often found in the accumulation zone of valley glaciers. They are successfully modelled by combining strong lateral shear with slow flow of ice from the ice ridge into the ice stream. The curvature at the most sharply bent part of the crevasse is found to be a useful measure and, together with measurements of ice flow from the ridge, can be used to infer the rate of lateral shear. This rate compares favorably with the single measurement obtained so far (Bindschadler and others 1987). A pattern of splaying crevasses develops on the ice stream down-glacier of its narrowest part. These crevasses are similar to longitudinal crevasses found in the ablation zone of many valley glaciers. Models with linear variation in velocity cannot reproduce the observed pattern. However, we have been able to simulate higher-order variations by joining together successive linear models. The observed crevasse pattern is successfully produced if the side shearing varies as the third power of distance from the center of symmetry of the crevasse pattern. Such a variation is expected for a linear gradient in side-drag stress and a third-power constitutive relation for ice. The observed crevasse pattern is thus consistent with side drag varying linearly across the ice stream. The third example is the rotation of transverse crevasses, which occur in trains on the main part of the ice stream. This rotation is due to side shearing but its magnitude is also affected by turning of the flow line and by normal strain-rates. It is therefore possible to reproduce the observed pattern for a wide range of velocity fields, and so measurements of the orientation of transverse crevasses provide only an upper limit on side shearing within the main body of the ice stream. There are many other examples of crevasse patterns on Ice Stream Β and on other glaciers that can be studied in this way. We propose that important constraints can be placed on velocity gradients and on the flow dynamics by using quantitative modelling of crevasse shapes.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


Author(s):  
Mark Pinsky ◽  
Eshkol Eytan ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Alexander Khain

AbstractAtmospheric motions in clouds and cloud surrounding have a wide range of scales, from several kilometers to centimeters. These motions have different impacts on cloud dynamics and microphysics. Larger-scale motions (hereafter referred to as convective motions) are responsible for mass transport over distances comparable with cloud scale, while motions of smaller scales (hereafter referred to as turbulent motions) are stochastic and responsible for mixing and cloud dilution. This distinction substantially simplifies the analysis of dynamic and microphysical processes in clouds. The present research is Part 1 of the study aimed at describing the method for separating the motion scale into a convective component and a turbulent component. An idealized flow is constructed, which is a sum of an initially prescribed field of the convective velocity with updrafts in the cloud core and downdrafts outside the core, and a stochastic turbulent velocity field obeying the turbulent properties, including the -5/3 law and the 2/3 structure function law. A wavelet method is developed allowing separation of the velocity field into the convective and turbulent components, with parameter values being in a good agreement with those prescribed initially. The efficiency of the method is demonstrated by an example of a vertical velocity field of a cumulus cloud simulated using SAM with bin-microphysics and resolution of 10 m. It is shown that vertical velocity in clouds indeed can be represented as a sum of convective velocity (forming zone of cloud updrafts and subsiding shell) and a stochastic velocity obeying laws of homogeneous and isotropic turbulence.


2018 ◽  
Vol 2 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Fa-An Chao ◽  
R. Andrew Byrd

Structural biology often focuses primarily on three-dimensional structures of biological macromolecules, deposited in the Protein Data Bank (PDB). This resource is a remarkable entity for the worldwide scientific and medical communities, as well as the general public, as it is a growing translation into three-dimensional space of the vast information in genomic databases, e.g. GENBANK. There is, however, significantly more to understanding biological function than the three-dimensional co-ordinate space for ground-state structures of biomolecules. The vast array of biomolecules experiences natural dynamics, interconversion between multiple conformational states, and molecular recognition and allosteric events that play out on timescales ranging from picoseconds to seconds. This wide range of timescales demands ingenious and sophisticated experimental tools to sample and interpret these motions, thus enabling clearer insights into functional annotation of the PDB. NMR spectroscopy is unique in its ability to sample this range of timescales at atomic resolution and in physiologically relevant conditions using spin relaxation methods. The field is constantly expanding to provide new creative experiments, to yield more detailed coverage of timescales, and to broaden the power of interpretation and analysis methods. This review highlights the current state of the methodology and examines the extension of analysis tools for more complex experiments and dynamic models. The future for understanding protein dynamics is bright, and these extended tools bring greater compatibility with developments in computational molecular dynamics, all of which will further our understanding of biological molecular functions. These facets place NMR as a key component in integrated structural biology.


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


Sign in / Sign up

Export Citation Format

Share Document