scholarly journals X-ray emission from Planetary Nebulae

1997 ◽  
Vol 180 ◽  
pp. 214-215 ◽  
Author(s):  
Gail M. Conway ◽  
You-Hua Chu

X-ray emission from planetary nebulae (PNe) may originate from two sources: central stars which are 100,000–200,000 K will emit soft X-rays, and shocked fast stellar winds reaching 106–107 K will emit harder X-rays. The former are point sources, while the shocked winds are expected to be extended sources emitting continuously out to the inner wall of the visible nebular shell (Weaver et al. 1977; Wrigge & Wendker 1996).

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 98
Author(s):  
Martín Guerrero

The stellar winds of the central stars of planetary nebulae play an essential role in the shaping of planetary nebulae. In the interacting stellar winds model, the fast stellar wind injects energy and momentum, which are transferred to the nebular envelope through an X-ray-emitting hot bubble. Together with other physical processes, such as the ionization of the nebular envelope, the asymmetrical mass-loss in the asymptotic giant branch (AGB), and the action of collimated outflows and magnetic fields, the pressurized hot gas determines the expansion and evolution of planetary nebulae. Chandra and XMM-Newton have provided us with detailed information of this hot gas. Here in this talk I will review our current understanding of the effects of the fast stellar wind in the shaping and evolution of planetary nebulae and give some hints of the promising future of this research.


1997 ◽  
Vol 180 ◽  
pp. 293-293
Author(s):  
S. A. Zhekov ◽  
M. Perinotto

The interacting stellar winds (ISW) theory (Kwok, S., Purton, C. R., Fitzgerald, P. M., 1978, ApJL, 219, L125) is nowadays widely accepted in the physics of Planetary Nebulae (PNe). It received much support from the observed fast winds in the central stars of PNe (CSPN), recognized to be a quite common phenomenon (e.g., Perinotto, M., 1993, in IAU Symp. No. 155, Planetary Nebulae, eds. R. Weinberger and A. Acker, Kluwer, Dordrecht, 57). Thus, the existance of a hot bubble in the PNe structure is a cornerstone of the ISW model. The high velocities (600–3500 km s–1) of the CSPN winds, are, according to the ISW model, directly responsible for an high gas temperature in the hot bubble, which is then expected to be the source of an extended X-ray and extreme ultraviolet (EUV) radiation. The PNe should also emit infrared coronal lines (IRCL) of highly ionized species since the high temperature plasma of the hot bubble is in contact with the much colder outer shell (optical PN) and the thermal conduction will produce a region of intermediate temperatures (5 × 105–106 K). A model considering the structure of the hot bubble in PNe with taking into account the thermal conductivity effects was present by Zhekov and Perinotto (1996, A&A, 309, 648).


1989 ◽  
Vol 131 ◽  
pp. 304-304
Author(s):  
S. P. Tarafdar ◽  
K.M. V. Apparao

Central stars of nineteen planetary nebulae were observed for X-ray emission using the Einstein Observatory and four of them were detected. High resolution observations with the Einstein Observatory indicates that the X-ray source in NGC 246 is a point source. These planetary nebulae with positive observations turn out to be the nearest, have the least extinction and also have the largest size of the nebulae around them. It is possible that X-ray emission is observed from these planetary nebulae with larger ages because of the smaller extinction by the nebulae and also due to the settling of heavy elements in the central star which otherwise prevents escape of X-rays by providing opacity.


Author(s):  
Martin A Guerrero

The stellar winds of the central stars of planetary nebulae play an essential role in planetary nebulae shaping. In the interacting stellar winds model, the fast stellar wind injects energy and momentum which are transfered to the nebular envelope through an X-ray-emitting hot bubble. Together with other physical processes, such as the ionization of the nebular envelope, the asymmetrical mass-loss in the AGB, and the action of collimated outflows and magnetic fields, the presurized hot gas determines the expansion and evolution of planetary nebulae. \emph{Chandra} and \emph{XMM-Newton} have provided us with detailed information of this hot gas. Here in this talk I will review our current understanding of the effects of the fast stellar wind in the shaping and evolution of planetary nebulae and give some hints of the promissing future of this research.


2011 ◽  
Vol 7 (S283) ◽  
pp. 204-210
Author(s):  
Martín A. Guerrero

AbstractThe photospheric emission from the hottest central stars of planetary nebulae (CSPNe) is capable to extend into the X-ray domain, with emission peaking at 0.1-0.2 keV and vanishing above 0.4 keV. Unexpected, intriguing hard X-ray emission with energies greater than 0.5 keV has been reported for several CSPNe and for a number of white dwarfs (WDs). Different mechanisms may be responsible for the hard X-ray emission from CSPNe and WDs: coronal emission from a late-type companion, shocks in fast winds as in OB stars, leakage from underneath the star photosphere, or accretion of material from a disk, a companion star, or the circumstellar medium. Therefore, the hard X-ray emission associated with CSPNe may have significant implications for our understanding of the formation of PNe: binary companions, disks, and magnetic fields are thought to play a major role in the shaping of PNe, whereas clumping in the stellar wind may have notable effects in the PN evolution by modifying the stellar mechanical energy output. Here I present the results of different observational efforts to search for hard X-ray emission from CSPNe and discuss the different mechanisms for the production of hard X-rays.


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


2021 ◽  
Vol 502 (3) ◽  
pp. 3385-3393
Author(s):  
Tatsuya Matsumoto ◽  
Tsvi Piran

ABSTRACT The discovery of optical/UV (ultraviolet) tidal disruption events (TDEs) was surprising. The expectation was that, upon returning to the pericentre, the stellar-debris stream will form a compact disc that will emit soft X-rays. Indeed, the first TDEs were discovered in this energy band. A common explanation for the optical/UV events is that surrounding optically thick matter reprocesses the disc’s X-ray emission and emits it from a large photosphere. If accretion follows the super-Eddington mass infall rate, it would inevitably result in an energetic outflow, providing naturally the reprocessing matter. We describe here a new method to estimate, using the observed luminosity and temperature, the mass and energy of outflows from optical transients. When applying this method to a sample of supernovae, our estimates are consistent with a more detailed hydrodynamic modelling. For the current sample of a few dozen optical TDEs, the observed luminosity and temperature imply outflows that are significantly more massive than typical stellar masses, posing a problem to this common reprocessing picture.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


2011 ◽  
Vol 7 (S283) ◽  
pp. 494-495
Author(s):  
Christer Sandin ◽  
Matthias Steffen ◽  
Ralf Jacob ◽  
Detlef Schönberner ◽  
Ute Rühling ◽  
...  

AbstractX-ray observations of young Planetary Nebulæ (PNe) have revealed diffuse emission in extended regions around both H-rich and H-deficient central stars. In order to also reproduce physical properties of H-deficient objects, we have, at first, extended our time-dependent radiation-hydrodynamic models with heat conduction for such conditions. Here we present some of the important physical concepts, which determine how and when a hot wind-blown bubble forms. In this study we have had to consider the, largely unknown, evolution of the CSPN, the slow (AGB) wind, the fast hot-CSPN wind, and the chemical composition. The main conclusion of our work is that heat conduction is needed to explain X-ray properties of wind-blown bubbles also in H-deficient objects.


Sign in / Sign up

Export Citation Format

Share Document