Model Atmospheres and Quantitative Spectroscopy of Central Stars of Planetary Nebulae

1989 ◽  
Vol 131 ◽  
pp. 273-292 ◽  
Author(s):  
R. P. Kudritzki ◽  
R.H. Méndez

It is a good tradition in IAU Symposia about PN to have a paper on model atmospheres. However, this is always a difficult task for the authors, because the majority of the PN researchers still believe that the best model atmosphere for a Central Star is a black body. Of course, this puts a theorist in stellar atmospheres into a somewhat desperate position. However, Central Stars of Planetary Nebulae (hereafter CSPN) - as all other stars - show spectral lines. And we will try to use the opportunity of this paper to convince that - as for all other stars - the quantitative analysis of these lines on basis of model atmospheres yields extremely valuable information about the physical nature of the stars.

1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


1993 ◽  
pp. 82-82
Author(s):  
R. Gabler ◽  
A. Gabler ◽  
R. H. Méndez ◽  
R. P. Kudritzki

1968 ◽  
Vol 34 ◽  
pp. 190-204 ◽  
Author(s):  
Robert E. Williams

The ionization of the most abundant elements in planetary nebulae has been determined for a number of models of nebulae at different epochs in their expansion. The values used for the temperatures and radii of the central stars and the sizes and densities of the shells have come from Seaton's evolutionary sequence. The ionizing radiation field has been taken from model atmosphere calculations of the central stars by Gebbie and Seaton, and Böhm and Deinzer. Emission-line fluxes have been calculated for the models and compared with observations of planetary nebulae by O'Dell, Osterbrock's group, and Aller and his collaborators. Results indicate that the central stars have strong He+ Lyman continuum excesses, similar to those predicted by Gebbie and Seaton. The mean abundance determinations for the nebulae made by Aller are confirmed, with the exception of nitrogen, which appears to be 3 or 4 times more abundant than his value. It is also seen that the electron temperatures of the nebulae are higher than previous theoretical determinations, providing better agreement with empirically derived values.


1989 ◽  
Vol 131 ◽  
pp. 355-355 ◽  
Author(s):  
D. J. Monk ◽  
M. J. Barlow ◽  
R. E. S. Clegg

AAT and IUE spectra of thirteen medium-excitation Magellanic Cloud planetary nebulae have been used to derive H I Zanstra effective temperatures and surface gravities for the central stars.


2020 ◽  
Vol 638 ◽  
pp. A103 ◽  
Author(s):  
N. Chornay ◽  
N. A. Walton

Context. Accurate distance measurements are fundamental to the study of planetary nebulae (PNe) but they have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims. The accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprecedented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods. We developed and applied an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the Hong Kong/AAO/Strasbourg Hα PN catalogue, taking into account the BP – RP colours of the Gaia sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources were inferred directly from the data. Results. We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and we discuss the prospects for further refinement of the matching based on additional data. We also compare the accuracy of our catalogue to that of previous works.


1989 ◽  
Vol 131 ◽  
pp. 411-424 ◽  
Author(s):  
F. D. Kahn

According to the multiple winds model a planetary nebula forms as the result of the interaction of a fast wind from the central star with the superwind that had previously been emitted by the progenitor star. The basic theory which deals with the spherically symmetrical case is briefly summarised. Various improvements are then considered in turn. A better history is clearly needed of the way that the central star becomes hotter, it is unrealistic to make the assumption that the superwind is spherically symmetrical, and finally there are likely to be important instabilities at some of the interfaces in the PN, notably that between the shocked superwind and the HII layer. These changes in the theoretical description produce a better understanding of the conditions in the outer parts of a PN and of the nature of its general shape, and they should lead to an explanation for the occurrence of high speed motions, and of highly ionized species and high excitation spectral lines.


1997 ◽  
Vol 180 ◽  
pp. 269-269
Author(s):  
M. Peña ◽  
G. Stasińska ◽  
C. Esteban ◽  
R. Kingsburgh ◽  
L. Koesterke ◽  
...  

We present the first results of a project on PNe with [WR] nuclei whose aim is twofold. One is to search for possible spatial abundance variations inside the nebula. The other is to check whether, for each object, one can build a self-consistent photoionization model (with the code PHOTO, Stasińska 1990, A&AS, 83, 501) using, as an input, the ionizing radiation field from an expanding model atmosphere reproducing the observed stellar lines of He, C and O (Koesterke et al., these proceedings).


1997 ◽  
Vol 180 ◽  
pp. 287-287
Author(s):  
N. A. Walton ◽  
J. R. Walsh ◽  
G. Dudziak

The Abell catalogue of planetary nebulae (PN) are distinguished by their large size, low surface brightness and generally faint central stars. They are thought to be old PN approaching the White Dwarf cooling track. A number have evidence for late thermal pulses (H-poor ejecta near the central star, e.g. A78) and binary central stars.


1983 ◽  
Vol 103 ◽  
pp. 230-230
Author(s):  
R. Tylenda

Massive central stars (M > 1 Mo) of planetary nebulae burn nuclear fuel on a time scale of hundreds or tens of years which is shorter than the recombination time in a typical planetary nebula. Consequently the ionization and thermal structure of a nebula with such a nucleus is expected to be far from equilibrium conditions. The greatest chance of observing such a nebula is when the central star cools down to the white dwarf region. Time-dependent photoionization models suggest the following non-equilibrium effects to be expected at this stage. Firstly, the nebula shows a double shell structure, i.e. a bright, inner ring is surrounded by a faint, extended halo best seen in the HI lines and infrared lines from low-ionization species, such as (Ne II) 12.8 μ. Secondly, the low-excitation emission ((O II), (Ne II), (S III)) is enhanced relative to the high-excitation ((O III), (Ne III), (S III)). Thirdly, different modifications of the Zanstra method result in significantly different temperatures for the central star with a general rule that THI > THeII > THeII/HI The He II Zanstra method gives the most reliable result. Fourthly, the electron temperature derived from the (O III) lines is appreciably higher than that obtained from the (N II) lines. It is suggested that NGC 7027 and NGC 2440 possess massive central stars and that the above time-dependent effects are currently observed in these nebulae.


2003 ◽  
Vol 209 ◽  
pp. 541-542 ◽  
Author(s):  
Aubrie McLean ◽  
Martín A. Guerrero ◽  
Robert A. Gruendl ◽  
You-Hua Chu

The origin of the wide range of morphologies observed in planetary nebulae (PNe) is not well established. The influence of a binary companion of the central star can naturally explain this variety of morphologies, but very few PNe have known binary central stars. The evolution of the binary system with mass loss may result in the displacement of the central star from the nebular center. The large sample of PNe observed by HST is being used to search for de-centered central stars. Preliminary results indicate that the occurrence of de-centered central stars is widespread among all morphological types of PNe.


Sign in / Sign up

Export Citation Format

Share Document