scholarly journals CCD scanning with a small telescope

1986 ◽  
Vol 118 ◽  
pp. 285-286
Author(s):  
Tom Gehrels

We use a scanning CCD for acquisition and astrometry of new and recovered comets, asteroids and other objects. The CCD is an RCA SID 53612 thinned, buried channel array of 512 × 320 30-micron square pixels that are back-illuminated and refrigerated to −60 C in a vacuum housing. The readout noise is ± 200 electron-hole pairs (ehp) per pixel per readout, the thermal dark current is 50 ehp/pixel/sec, and the scale of our 12-bit analog-to-digital converter is 25 ehp/AD unit. The Newtonian focus of a 91-cm telescope has been modified from f/5 to f/3.85 with a relay lens to give a platescale of 1.73 arcsecs per pixel, a scale chosen for efficient coverage of sky. The CCD is operated in the scanning mode with the telescope drive off, and the rate of transfer of signal charges is tuned to correspond to the rate at which the star images drift across the focal plane. The exposure time (the time the images take to transit the “512” dimension of the CCD) is 60 seconds at the celestial equator, giving a “six sigma” limiting (visual) magnitude of 19.5. A typical scan covers 30 minutes of time in right ascension by 0.156 deg in declination and is stored as a digital array of 14848 × 320 CCD pixels. A set of three 30-minute scans near the opposition point along the ecliptic nets about 5 new main-belt asteroids. Potential moving objects are revealed by determining the positions of all the stellar images in each scan and comparing the results of the three scans. Several potential reference (SAO) stars are in one scan. The reduction from pixel coordinates to apparent topo-centric equatorial coordinates of date involves only three free parameters, making our astrometric reductions simpler than the classical affine transformation of plate coordinates. There is no rotational transformation and the scale in right ascension is defined by the clock. The declination scale is determined from the reference stars. The zero points of R.A. and Dec. are given by the average differences between the pixel coordinates and catalog positions of the reference stars.

1979 ◽  
Vol 81 ◽  
pp. 133-143 ◽  
Author(s):  
W. Fricke

Within the work being carried out at Heidelberg on the establishment of the new fundamental reference coordinate system, the FK5, the determination of the location of celestial equator and the equinox form an important part. The plane of the celestial equator defined by the axis of rotation of the Earth and the plane of the ecliptic defined by the motion of the Earth about the Sun are both in motion due to various causes. The intersection of the equator and the ecliptic, the dynamical equinox, is therefore in motion. Great efforts have been made in the past to determine the location and motion of the dynamical equinox by means of observations of Sun, Moon and planets in such a manner that the dynamical equinox can serve as the origin of the right ascension system of a fundamental catalogue. The results have not been satisfactory, and we have some important evidence that the catalogue equinox of the FK4 is not identical with the “dynamical equinox”. Moreover, is has turned out that the difference α(DYN) - α(FK4) = E(T) depends on the epoch of observation T. Duncombe et al. (1974) have drawn attention to the possible confusion between the catalogue equinox and dynamical equinox; they mention the difference between two Earth longitude systems, one established by the SAO using star positions on the FK4 and the other one established by the JPL using planetary positions measured from the dynamical equinox. This is undoubtedly one legitimate explanation of the difference, even if other sources of errors may also have contributed.


1990 ◽  
Vol 141 ◽  
pp. 93-93
Author(s):  
V. A. Fomin

The long series of meridian observations of the Moon can be used for the precise determination of the equinox- and equator-corrections of a star catalogue. Systematic errors of different charts of the lunar marginal zone used for the reduction of the lunar limb observations have no influence on the determination of the secular variations of the zero-points of the fundamental coordinate system.From meridian observations of the lunar limb made during the interval 1923-1977 in Washington, Greenwich, Cape and Tokyo the following estimate is found for the correction to the right ascension system of the FK4 catalogue: which is in disagreement with the values used for the compilation of the FK5 catalogue.


2017 ◽  
Vol 16 (2) ◽  
pp. 166
Author(s):  
Reza Akbar

Data of solar coordinate such as longitude and latitude of the ecliptic, declination, and right ascension are the data that are often involved in astronomical reckoning and practical islamic astronomy. These data are often found in ephemeris tables such as the ephemeris of Hisab Rukyat by Ministry of Religious Affairs of the Republic of Indonesia, Nautica Almanac and others. One of the algorithms used in the preparation of ephemeris data tables is the Jean Meeus Higher Accuracy algorithm. Calculation of ephemeris data of solar coordinates using these algorithms starts with counting Julian Day (JD) and Julian Day Ephemeris (JDE). By using advanced algorithms based on VSOP87 theory, we can then calculate the longitude and latitude of the solar ecliptic, the distance of the earth to the Sun, the true obliquity (angle between the celestial equator and the ecliptic), the right ascension and declination, the equation of time and the Sun's semi diameter. The calculation of the solar coordinate in this paper is for June 7, 2017 at 19.00 WIB or 12.00 GMT. The results will then be compared with the data of solar coordinate in Ephemeris Hisab Rukyat 2017 at the same time.


1967 ◽  
Vol 31 ◽  
pp. 469-471
Author(s):  
J. G. Duthie ◽  
M. P. Savedoff ◽  
R. Cobb
Keyword(s):  

A source of gamma rays has been found at right ascension 20h15m, declination +35°, with an uncertainty of 6° in each coordinate. Its flux is (1·5 ± 0·8) x 10-4photons cm-2sec-1at 100 MeV. Possible identifications are reviewed, but no conclusion is reached. The mechanism producing the radiation is also uncertain.


1965 ◽  
Vol 5 ◽  
pp. 109-111
Author(s):  
Frederick R. West

There are certain visual double stars which, when close to a node of their relative orbit, should have enough radial velocity difference (10-20 km/s) that the spectra of the two component stars will appear resolved on high-dispersion spectrograms (5 Å/mm or less) obtainable by use of modern coudé and solar spectrographs on bright stars. Both star images are then recorded simultaneously on the spectrograph slit, so that two stellar components will appear on each spectrogram.


1978 ◽  
Vol 48 ◽  
pp. 433-435
Author(s):  
F. Schmeidler

Meridian observations of fundamental stars were made at Breslau Observatory in 1922 to 1925. The observations in right ascension were made by W.Rabe with the 6-inch transit instrument, whereas the declinations were observed by A.Wilkens with the vertical circle. In both coordinates, observations of the Sun were also made.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
T. A. Dodson ◽  
E. Völkl ◽  
L. F. Allard ◽  
T. A. Nolan

The process of moving to a fully digital microscopy laboratory requires changes in instrumentation, computing hardware, computing software, data storage systems, and data networks, as well as in the operating procedures of each facility. Moving from analog to digital systems in the microscopy laboratory is similar to the instrumentation projects being undertaken in many scientific labs. A central problem of any of these projects is to create the best combination of hardware and software to effectively control the parameters of data collection and then to actually acquire data from the instrument. This problem is particularly acute for the microscopist who wishes to "digitize" the operation of a transmission or scanning electron microscope. Although the basic physics of each type of instrument and the type of data (images & spectra) generated by each are very similar, each manufacturer approaches automation differently. The communications interfaces vary as well as the command language used to control the instrument.


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


Sign in / Sign up

Export Citation Format

Share Document