scholarly journals Diffusion Mechanism of Radiation of a Charged Particle on the Randomly Spaced Dust Grains in the X-Rays

1999 ◽  
Vol 194 ◽  
pp. 319-320
Author(s):  
Zh. S. Gevorkian ◽  
V. V. Hambaryan ◽  
A. A. Akopian

The theory of diffusion radiation of a charged particle on the fluctuations of the dielectric constant developed by Gevorkian can be explained as follows:A charge moving in a medium creates an electromagnetic field (pseudophoton) which is scattered on the fluctuations of the dielectric constant (here, dust particles) and converted into radiation. In the wavelength region (l « λ « L) (l is the mean free path of the photon in the medium, L is the characteristic size of the system) the main mechanism of the radiation is the diffusion of the pseudophoton (Gevorkian & Atayan 1990, Gevorkian 1992, Gevorkian 1993).

2001 ◽  
Vol 65 (4) ◽  
pp. 257-272 ◽  
Author(s):  
Ya. K. KHODATAEV ◽  
G. E. MORFILL ◽  
V. N. TSYTOVICH

It is shown that the interaction of dust with neutral plasma particles can lead to attractive forces between dust particles, both in the case where the distance between dust particles is less than the mean free path of neutral particles and in the case where it is greater. The expressions for attractive forces differs in the two limits only by a numerical coefficient. The additional force of dust interaction is found to be due to the neutrals created by recombination of charged plasma particles on the surface of dust particles. The influence of radiative dust cooling on dust–dust interaction is considered.


The main step in the calculation of the electrical resistivities of monovalent metals, in which the conduction electrons are almost completely degenerate, is the calculation of the relaxation time τ of the electrons at the Fermi surface, which in these metals is a sphere, and is well inside the first Brillouin zone. Since the wave-length λ , and hence the group velocity v , of the Fermi electrons is known, the calculation of τ means also the calculation of the mean free path l = vτ of these electrons. Now the finite mean free path of these electrons arises from the scattering—particularly the large-angle scattering—of these electrons in their passage through the crystal, by the thermally agitated atoms. Hence a detailed knowledge of the scattering coefficient of the crystal for the Fermi electrons, incident and scattered along different directions in the crystal, will enable us to calculate τ or l . Now the scattering coefficient depends on two factors. 1. The atom form factor for scattering, which in monovalent metals may be taken to be isotropic, i.e. independent of the direction of incidence or of scattering separately, but dependent on the angle of scattering ɸ between them, and on λ . (Extensive measurements are available on the scattering of slow electrons by the rare gases, which give us information regarding the atom form factors for the scattering of the Fermi electrons in the corresponding alkali metals, and the variation of these factors with ɸ .) 2. The structure factor of the crystal, which, besides being a function of λ , will vary, even in a cubic crystal, with the direction of incidence and of scattering, but will, however, be independent of the nature of the waves, i.e. independent of whether they are X-rays, or electron or neutron waves. (The ‘diffuse scattering’ of X-rays of long wave-lengths in crystals has been studied in great detail, both theoretically and experimentally, from which one can calculate the structure factors of the monovalent metals for their respective Fermi wave-lengths, for different directions of incidence and of scattering in the crystals.) Using these data for the atom form factor and for the structure factor of the crystal, the mean free path of the Fermi electrons is calculated in detail in the present paper for different directions of incidence, for one typical monovalent metal, namely sodium crystal. The free path l is given by 1/ l = ψv 2 kTβσ , where v is the number of atoms per unit volume, σ is the cross-section of the atom for total scattering in all directions, β is the compressibility, and ψ is a numerical factor which varies from a maximum of about 2.2 for incidence along [110] to a minimum of about 0.9 for incidence along [100], its average value being close to the minimum, and nearly unity. With ψ actually unity, the right-hand side of the above expression for 1/ l can be seen to be just the Einstein-Smoluchowski expression for the attenuation coefficient of a liquid medium for long waves: which shows that in sodium, and presumably in the other monovalent metals also, the mean free path of the Fermi electrons may be taken roughly as the reciprocal of the attenuation coefficient of the crystal due to scattering, and the scattering may be regarded as due almost wholly to the local thermal fluctuations in density, and the Fermi wave-length as long enough for the Einstein-Smoluchowski formula for density-scattering to be applicable.


Author(s):  
Aydin Nabovati ◽  
Daniel P. Sellan ◽  
Cristina H. Amon

It is well known that continuum-based thermal transport models, such as the Fourier law, fail when the characteristic size of a system becomes comparable to the mean free path of carriers that transport thermal energy. The current work uses the lattice Boltzmann method to develop two modifications to the Fourier heat equation so that it can capture sub-continuum effects. The two modifications are: (i) a size-dependent thermal conductivity and (ii) a size-dependent temperature jump at the system boundaries.


Author(s):  
Shaymaa H. Jasim, Wisam A. Radhi, Riyadh M. Ramadhan, Raed M

The extinction of X-rays (radiation attenuation) was studied using the low-density samples of polyethylene polymer to which the rockwool fibers powder is added as filled filler. This latter was blended with (weight percent) and with a micro-filler (filler particle) the sizes equal to or less than<212 μm. Furthermore, the free path average and linear attenuation coefficient were calculated.  Experimental results showed that the rockwool fibers powder act to reduce the spaces between polymer chains particularly when the weight percent is more than (10%), which implies the capability of the polymer/filler to make, the X-rays applied to the samples; disappear at these rates used in this study. The experimental work was conducted by applying a radiation beam having an energy of 30 kV based on the use of the X-ray unit with two tubes which are; X-ray generating tube and G-M detector with an energy of VG.M =600. The magnitudes of the mean free path are inversely proportional to the weight percent of the compound material whereas the proportionality of these percentages which are particularly the high ones which occur at experimental values of the linear attenuation coefficient. The value of the mean free path of 1.28 cm is the maximum value obtained at a weight percent of 1 %, whereas the minimum value of the mean path was 0.877 cm at a weight percent of 10 %. In addition, the maximum value of the attenuation coefficient obtained is 4.754 cm-1 at a weight percent of 10% and its minimum value at a weight percent of 1% was 0.7 cm-1. The maximum value of transmittance and the minimum value of absorbance were obtained at a weight percent of 10%, are (31.8) and (68.2) respectively. Through the practical results that we obtained that are better suited to high percentages more additive proportions can be used than the percentages used in this research to shielding X-rays more.


2005 ◽  
Author(s):  
Xinwei Wang

In this work, an equilibrium technique is developed to study the thermal transport in nanomaterials. By directly tracking the relaxation behavior of energy carriers, the developed technique is able to determine the effect of boundary scattering on thermal transport. Since no temperature differential across the material is required to determine its thermal conductivity, the developed technique is applicable to nanomaterials of different shapes and capable of capturing the anisotropic nature of the thermal transport inside. Applying this technique, the thermal transport in several typical nanomaterials—nanofilms, square and round nanowires, and spherical and cubic nanoparticles are studied in detail. A strong anisotropic nature of thermal transport in nanomaterials is observed. For nanofilms and nanowires, the thermal conductivity in the restricted directions (thickness and radial) is smaller than that in the unrestricted direction. This anisotropic nature is more obvious and important when the characteristic size of nanomaterials becomes comparable to or smaller than the mean free path of energy carriers. Our results comparison shows that with the same characteristic size, the shape of the cross section of nanowires has appreciable effect on the thermal transport in the axial direction. For spherical and cubic nanoparticles, little difference is observed between their thermal conductivities.


Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 201-213
Author(s):  
Alexander V. Zakharov ◽  
Eugene V. Rosenfeld

Dust particles on a nonconductive surface are known to acquire electric charge and detach from the surface under plasma conditions and/or when affected by ultraviolet radiation. Similar phenomena occur as a result of electrostatic surface cleaning (shedding) as well as in nature, e.g., when observing levitation of dust particles above the lunar surface. A detachment of dust particles from the surface should occur when the electrostatic forces of their repulsion Fc exceed the sum of the gravitation Fg forces and the adhesive van der Waals FvdW forces acting on the particle on a nonconducting surface. However, a paradoxical situation usually arises: the three primary forces of different nature Fc, Fg, and FvdW, acting on a speck of dust with a characteristic size of the order of hundreds or thousands of nanometers, are completely incomparable in magnitude, herewith Fc << Fg << FvdW. In the last decade, numerous attempts have been made to explain how a particle on a nonconducting surface can acquire a charge sufficient for the electrostatic forces that arise to approach the adhesive forces’ values. However, despite some successes, many questions remain unanswered. This article presents a brief analysis of the charge appearance process on a solitary dust speck and a speck lying on the surface. To explain the detachment of dust particles from the surface caused by electrostatic forces and the accumulation of a charge on those particles sufficient for levitation, one should take into account the charge density fluctuations on the surface.


Author(s):  
Vicente Jesús León-Muñoz ◽  
Mirian López-López ◽  
Alonso José Lisón-Almagro ◽  
Francisco Martínez-Martínez ◽  
Fernando Santonja-Medina

AbstractPatient-specific instrumentation (PSI) has been introduced to simplify and make total knee arthroplasty (TKA) surgery more precise, effective, and efficient. We performed this study to determine whether the postoperative coronal alignment is related to preoperative deformity when computed tomography (CT)-based PSI is used for TKA surgery, and how the PSI approach compares with deformity correction obtained with conventional instrumentation. We analyzed pre-and post-operative full length standing hip-knee-ankle (HKA) X-rays of the lower limb in both groups using a convention > 180 degrees for valgus alignment and < 180 degrees for varus alignment. For the PSI group, the mean (± SD) pre-operative HKA angle was 172.09 degrees varus (± 6.69 degrees) with a maximum varus alignment of 21.5 degrees (HKA 158.5) and a maximum valgus alignment of 14.0 degrees. The mean post-operative HKA was 179.43 degrees varus (± 2.32 degrees) with a maximum varus alignment of seven degrees and a maximum valgus alignment of six degrees. There has been a weak correlation among the values of the pre- and postoperative HKA angle. The adjusted odds ratio (aOR) of postoperative alignment outside the range of 180 ± 3 degrees was significantly higher with a preoperative varus misalignment of 15 degrees or more (aOR: 4.18; 95% confidence interval: 1.35–12.96; p = 0.013). In the control group (conventional instrumentation), this loss of accuracy occurs with preoperative misalignment of 10 degrees. Preoperative misalignment below 15 degrees appears to present minimal influence on postoperative alignment when a CT-based PSI system is used. The CT-based PSI tends to lose accuracy with preoperative varus misalignment over 15 degrees.


2020 ◽  
Vol 99 (8) ◽  

Introduction: The study compares the results of open reduction using volar locking plates with ligamentotaxis by external fixation in fractures of distal radius type 2R3C according to AO classification. Methods: A retrospective study evaluating the results of osteosynthesis in patients with distal radius fractures type 2R3C according to AO classification, operated until December 2018. The ORIF method with volar locking plates (LCP) was used in 54 patients, and closed reduction with ligamentotaxis using external fixation (EF) was used in 33 patients. The mean age of the patients was 46.7 years in the LCP group and 59.6 years in the EF group. All were evaluated for their X-ray and functional outcomes and according to the Green and O’Brien score at 6 and 12 months after surgery. Results: According to X-rays at 12 months in the LCP group, the mean sagittal tilt was 10.13°, the mean radial inclination was 23.89°, and the mean radial length was 11.84 mm. In the EF group, the mean sagittal tilt was 6.32°, the mean radial inclination was 24.78°, and the mean radial length was 9.89 mm. According to the Green and O’Brien score, we recorded a mean score of 84.44 points in the LCP group at 12 month; we achieved good and excellent results in 83.33% of the patients and no poor result was observed. In the EF group the final mean score was 77.27; good and excellent results were achieved in 45.46% of the patients and a poor result in one patient. Conclusion: Based on the results in our group of patients, the internal type osteosynthesis using LCP implants can be recommended as a first-choice technique in the treatment of 2R3C fractures according to AO classification.


2002 ◽  
Vol 727 ◽  
Author(s):  
S. Ichikawa ◽  
T. Akita ◽  
M. Okumura ◽  
M. Haruta ◽  
K. Tanaka

AbstractThe catalytic properties of nanostructured gold catalyst are known to depend on the size of the gold particles and to be activated when the size decreases to a few nanometers. We investigated the size dependence of the three-dimensional nanostructure on the mean inner potential of gold catalysts supported on titanium oxide using electron holography and high-resolution electron microscopy (HREM). The contact angle of the gold particles on the titanium oxide tended to be over 90° for gold particles with a size of over 5 nm, and below 90° for a size of below 2 nm. This decreasing change in the contact angle (morphology) acts to increase the perimeter and hence the area of the interface between the gold and titanium oxide support, which is considered to be an active site for CO oxidation. The mean inner potential of the gold particles also changed as their size decreased. The value of the inner potential of gold, which is approximately 25 V in bulk state, rose to over 40 V when the size of the gold particles was less than 2 nm. This phenomenon indicates the existence of a charge transfer at the interface between gold and titanium oxide. The 3-D structure change and the inner potential change should be attributed to the specific electronic structure at the interface, owing to both the “nano size effect” and the “hetero-interface effect.”


Sign in / Sign up

Export Citation Format

Share Document