scholarly journals Study the effect of addition Rockwool fibers on the Shielding Radiation  for the X-ray of Low Density Polyethylene (LDPE): دراسة تأثير إضافة ألياف الصوف الصخري على الحجب الإشعاعي للأشعة السينية للبولي اثيلين واطىئ الكثافة

Author(s):  
Shaymaa H. Jasim, Wisam A. Radhi, Riyadh M. Ramadhan, Raed M

The extinction of X-rays (radiation attenuation) was studied using the low-density samples of polyethylene polymer to which the rockwool fibers powder is added as filled filler. This latter was blended with (weight percent) and with a micro-filler (filler particle) the sizes equal to or less than<212 μm. Furthermore, the free path average and linear attenuation coefficient were calculated.  Experimental results showed that the rockwool fibers powder act to reduce the spaces between polymer chains particularly when the weight percent is more than (10%), which implies the capability of the polymer/filler to make, the X-rays applied to the samples; disappear at these rates used in this study. The experimental work was conducted by applying a radiation beam having an energy of 30 kV based on the use of the X-ray unit with two tubes which are; X-ray generating tube and G-M detector with an energy of VG.M =600. The magnitudes of the mean free path are inversely proportional to the weight percent of the compound material whereas the proportionality of these percentages which are particularly the high ones which occur at experimental values of the linear attenuation coefficient. The value of the mean free path of 1.28 cm is the maximum value obtained at a weight percent of 1 %, whereas the minimum value of the mean path was 0.877 cm at a weight percent of 10 %. In addition, the maximum value of the attenuation coefficient obtained is 4.754 cm-1 at a weight percent of 10% and its minimum value at a weight percent of 1% was 0.7 cm-1. The maximum value of transmittance and the minimum value of absorbance were obtained at a weight percent of 10%, are (31.8) and (68.2) respectively. Through the practical results that we obtained that are better suited to high percentages more additive proportions can be used than the percentages used in this research to shielding X-rays more.

Author(s):  
Ahmed Jassim Mohammed, Riad Manadi Ramadan, Raed Muslim Shab

In this research, Calculation the Attenuation of X-ray radiation for low density polyethylene composites with oyster shells powder (extracted from the Caspian Sea in Iran), low density polyethylene production in the form of powder by the State Company for Petrochemical Industries (Basra-Iraq), the range of the added of oyster shells powder (extracted from the Caspian sea in Iran) has the values (0%, 2.5%, 5%, 10%, 15%, 20%, and 25%) for low density polyethylene weight and the added oyster shells powder with the particular size (≤ 250 μm). were investigated through several variables, such as, linear attenuation coefficient(μ) and mean free path(λ). The obtained results were appeared that the added oyster to reduce the spaces between the polymer chains, which reflects the high ability of the polymer as (10%-20%), and this increase will give further property that increase the attenuation x-ray of the prepared specimens. Where the practical study and the beam of intensity of energy (30 kv) and)VG.M = 600 voit(. The results showed that when increasing filler content, the total linear attenuation coefficient increases while the mean free path decreases. The mean free path (λ) at (2.5%) is (2.1 cm (, while at (20%) is (0.40 cm). The value of the linear attenuation coefficient (μ) at (20%) is)2.44 cm-1(, while at (2.5%) is) 0.49 cm-1(.


The main step in the calculation of the electrical resistivities of monovalent metals, in which the conduction electrons are almost completely degenerate, is the calculation of the relaxation time τ of the electrons at the Fermi surface, which in these metals is a sphere, and is well inside the first Brillouin zone. Since the wave-length λ , and hence the group velocity v , of the Fermi electrons is known, the calculation of τ means also the calculation of the mean free path l = vτ of these electrons. Now the finite mean free path of these electrons arises from the scattering—particularly the large-angle scattering—of these electrons in their passage through the crystal, by the thermally agitated atoms. Hence a detailed knowledge of the scattering coefficient of the crystal for the Fermi electrons, incident and scattered along different directions in the crystal, will enable us to calculate τ or l . Now the scattering coefficient depends on two factors. 1. The atom form factor for scattering, which in monovalent metals may be taken to be isotropic, i.e. independent of the direction of incidence or of scattering separately, but dependent on the angle of scattering ɸ between them, and on λ . (Extensive measurements are available on the scattering of slow electrons by the rare gases, which give us information regarding the atom form factors for the scattering of the Fermi electrons in the corresponding alkali metals, and the variation of these factors with ɸ .) 2. The structure factor of the crystal, which, besides being a function of λ , will vary, even in a cubic crystal, with the direction of incidence and of scattering, but will, however, be independent of the nature of the waves, i.e. independent of whether they are X-rays, or electron or neutron waves. (The ‘diffuse scattering’ of X-rays of long wave-lengths in crystals has been studied in great detail, both theoretically and experimentally, from which one can calculate the structure factors of the monovalent metals for their respective Fermi wave-lengths, for different directions of incidence and of scattering in the crystals.) Using these data for the atom form factor and for the structure factor of the crystal, the mean free path of the Fermi electrons is calculated in detail in the present paper for different directions of incidence, for one typical monovalent metal, namely sodium crystal. The free path l is given by 1/ l = ψv 2 kTβσ , where v is the number of atoms per unit volume, σ is the cross-section of the atom for total scattering in all directions, β is the compressibility, and ψ is a numerical factor which varies from a maximum of about 2.2 for incidence along [110] to a minimum of about 0.9 for incidence along [100], its average value being close to the minimum, and nearly unity. With ψ actually unity, the right-hand side of the above expression for 1/ l can be seen to be just the Einstein-Smoluchowski expression for the attenuation coefficient of a liquid medium for long waves: which shows that in sodium, and presumably in the other monovalent metals also, the mean free path of the Fermi electrons may be taken roughly as the reciprocal of the attenuation coefficient of the crystal due to scattering, and the scattering may be regarded as due almost wholly to the local thermal fluctuations in density, and the Fermi wave-length as long enough for the Einstein-Smoluchowski formula for density-scattering to be applicable.


2021 ◽  
Vol 19 (9) ◽  
pp. 142-151
Author(s):  
Khaled W. Yahya ◽  
Edrees E. Khadeer

Among all types of radiation, X-ray has always garnered the most interest, owing to the growing availability of X-ray tubes in industry, research institutions, and medical facilities. In this research, the linear (μl) and mass (μm) attenuation coefficient, half value layer (HVL) and mean free path (λ) of the epoxy polymer-based composites which includes both lead oxide (Pb3O4), mixture of (Fe2O3 + Pb3O4) and barium sulfate (BaSO4) with different weight percentages were determined experimentally for the incident photon energies of (29-35 kV) emitted from (X-rays) source. The dispersion of the filler was also investigated using a scanning electron microscope to examine the composites morphology. The obtained results showed that adding these powders to epoxy has an effect on the X-ray shielding abilities of the prepared composites, meaning that there is a direct relationship between the weight ratios of the composite material with the linear (μl) and mass (μm) attenuation coefficient, and an inverse relationship with the half value layer (HVL) and free path rate (λ). While changing the X-ray shield with applied voltages showed a behavior opposite to what was mentioned above. The result also shows that the lead oxide (Pb3O4) composites yield better attenuation performance than the pure epoxy and the other two composites, especially at high weight fraction (50 Wt.%) of this filler, which due to the high density of these fillers and fine dispensability in the polymer matrix.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2212
Author(s):  
Worawat Poltabtim ◽  
Ekachai Wimolmala ◽  
Teerasak Markpin ◽  
Narongrit Sombatsompop ◽  
Vichai Rosarpitak ◽  
...  

The potential utilization of wood/polyvinyl chloride (WPVC) composites containing an X-ray protective filler, namely bismuth oxide (Bi2O3) particles, was investigated as novel, safe, and environmentally friendly X-ray shielding materials. The wood and Bi2O3 contents used in this work varied from 20 to 40 parts per hundred parts of PVC by weight (pph) and from 0 to 25, 50, 75, and 100 pph, respectively. The study considered X-ray shielding, mechanical, density, water absorption, and morphological properties. The results showed that the overall X-ray shielding parameters, namely the linear attenuation coefficient (µ), mass attenuation coefficient (µm), and lead equivalent thickness (Pbeq), of the WPVC composites increased with increasing Bi2O3 contents but slightly decreased at higher wood contents (40 pph). Furthermore, comparative Pbeq values between the wood/PVC composites and similar commercial X-ray shielding boards indicated that the recommended Bi2O3 contents for the 20 pph (40 ph) wood/PVC composites were 35, 85, and 40 pph (40, 100, and 45 pph) for the attenuation of 60, 100, and 150-kV X-rays, respectively. In addition, the increased Bi2O3 contents in the WPVC composites enhanced the Izod impact strength, hardness (Shore D), and density, but reduced water absorption. On the other hand, the increased wood contents increased the impact strength, hardness (Shore D), and water absorption but lowered the density of the composites. The overall results suggested that the developed WPVC composites had great potential to be used as effective X-ray shielding materials with Bi2O3 acting as a suitable X-ray protective filler.


2007 ◽  
Vol 13 (5) ◽  
pp. 354-357 ◽  
Author(s):  
Raynald Gauvin

The derivation of a universal equation to compute the range of emitted X rays is presented for homogeneous bulk materials. This equation is based on two fundamental assumptions: the φ(ρz) curve of X-ray generation is constant and the ratio of the emitted to the generated X-ray range is equal to the ratio of the emitted to the generated X-ray intensity. An excellent agreement is observed with data obtained from Monte Carlo simulations of 200,000 electron trajectories in C, Al, Cu, Ag, Au, and an Fe–B alloy with boron weight fractions equal to 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, performed with the electron beam energy varied from 1 to 30 keV in 1-keV steps. When the ratio of the generated X-ray range to the photon mean free path is much smaller than one, the emission X-ray range is equal to the generated X-ray range, but when this ratio is much greater than one, the emission X-ray range is constant and is given by the product of the effective photon mean free path multiplied by the sine of the take-off angle.


2018 ◽  
Vol 610 ◽  
pp. A6 ◽  
Author(s):  
S. Musset ◽  
E. P. Kontar ◽  
N. Vilmer

Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims. We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods. We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results. X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions. We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25–500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.


An analysis is given of the electronic structure of liquids under conditions for which the almost free-electron approximation is applicable. An enumeration of the various conditions that can exist is given, based on the relative magnitudes of the mean free path and range of order in the liquid. An important case is that in which the electronic properties can be described in terms of the X -ray data and this is discussed in detail, the curves of energy against momentum being given with calculations of the resistance and Knight shift. When considerable order is present the analysis is more complicated and the behaviour of the energy momentum curves is given as the range of order varies from the extreme cases of no order to polycrystalline order.


2020 ◽  
pp. 60-65
Author(s):  
Hiwa Mohammad Qadr

The purpose of this study was to determine the linear attenuation coefficient, the mass attenuation coefficient, Half Value Layer. Tenth Value Layer and Mean Free Path for four different shielding materials such as aluminium, iron, zirconium and tungsten. By using the gamma-radiation energies emitted from 152Eu, 22Na, 137Cs, and 60Co radioactive sources. For this purpose, the attenuation measurements were performed using NaI(TI) detector. Calculated values of all parameters of the all shielding materials were compared with each other. The results of all presented parameters show that, tungsten has the best radiation shielding compared to other shielding materials. Then, the obtained parameters were compared with the theoretical values.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4194
Author(s):  
Mohamed Elsafi ◽  
Mohamed A. El-Nahal ◽  
M. F. Alrashedi ◽  
O. I. Olarinoye ◽  
M. I. Sayyed ◽  
...  

In this work, some marble types were collected from Egypt, and their shielding characteristics were estimated. Their rigidity, in addition to their elegant shape, led us to consider their use as a protective shield, in addition to making the workplace more beautiful. The mass attenuation coefficient (μ/ρ) was calculated for three types of marble (Breshia, Galala, and Trista) experimentally, using a narrow gamma ray source and sodium iodide scintillation detector (NaI). The results obtained were compared with the XCOM program and indicated a very good agreement between the two methods. The linear attenuation coefficient (μ) was evaluated to calculate the half and tenth value layers. The maximum value of 1.055, 1.041, and 1.024 cm−1 was obtained for Breshia, Galala, and Trista, respectively, at 0.06 MeV. The mean free path for studying the materials was compared with other shielding materials and showed good results at different energy scales. The energy absorption (EABF) and exposure buildup factors (EBF) were determined at different mean free paths. The fast neutron removal cross section ∑R was calculated and expresses the ability of the marbles to slow down fast neutrons through multiple scattering. This is the ability of the marbles to shield fast neutrons.


Sign in / Sign up

Export Citation Format

Share Document