scholarly journals The Strong Magnetic Field Galactic Center-AGN-Quasar Model

1989 ◽  
Vol 136 ◽  
pp. 335-340 ◽  
Author(s):  
Howard D. Greyber

The energy storage and dynamics at the center of galaxies is explained using a new construct, the gravitationally bound current loop (GBCL), produced when the galaxy formed under gravitational collapse. Thin toroidal plasma around the slender intense relativistic current loop is bound to it by the Maxwell “frozen-field” condition, and also binds gravitationally to the central object (presumably a black hole). The Strong Magnetic Field model (SMF) explains directly the Milky Way (MW) galactic center radio observations of a vertical magnetic field perpendicular to the galactic disk and the extended radio arcs, as well as the production of successive radio blobs ejected from the compact cores of active galactic nuclei (AGN) or quasars.

1990 ◽  
Vol 123 ◽  
pp. 559-561
Author(s):  
Howard D. Greyber

Three general models have been constructed for the fantastically powerful “central engine” that powers the enormous energy output from quasars and active galactic nuclei (AGN). One model assumes a rapidly rotating accretion disk around a central black hole (however the disks, thick or thin, are subject to violent instabilities). Another assumes that in some postulated circuitry energy is extracted from the rotational portion of the deepest potential hole known, a black hole. Both models appear implausible.The third model is the STRONG MAGNETIC FIELD MODEL (SMF) in which an extremely strong gravitationally bound current loop (GBCL) is formed during the gravitational collapse that forms the galaxy or quasar, producing a very intense dipole magnetic field anchored in the nucleus. SMF, first published in 1962, thus predicted the vertical magnetic field configuration seen today at our own galactic nucleus; to some the radio arcs observed suggest a dipole magnetic field there, just as SMF predicts.


1998 ◽  
Vol 184 ◽  
pp. 331-340 ◽  
Author(s):  
Mark Morris

The magnetic environment of the Galactic nucleus contrasts sharply with that of the Galactic disk. The inner few hundred parsecs of our Galaxy appear to be dominated by a strong (~milligauss) and uniform dipole field which dominates the pressure within the central intercloud medium. An attractive hypothesis for the origin of the central vertical field is that it results from the concentration of protogalactic field by radial inflow of gas throughout the Galaxy's lifetime. The predominant orientation of the magnetic field within dense molecular clouds is parallel to the galactic plane, which can be understood in terms of the strong tidal shear to which these clouds are subjected. The contrasting geometries of the cloud and intercloud fields allow for magnetic field line reconnection at cloud surfaces, which, under the right circumstances, could produce the relativistic electrons which delineate the nonthermal radio filaments near the Galactic center with their synchrotron emission. The characteristics of the Galactic center “magnetosphere” should be generalizable to all gas-rich spiral galaxies. Inadequate spatial resolution currently prevents us from exploring magnetic fields in other galactic nuclei to the same depth as in the Galactic center, but existing evidence is consistent with similar magnetic geometries elsewhere.


Nature ◽  
2013 ◽  
Vol 501 (7467) ◽  
pp. 391-394 ◽  
Author(s):  
R. P. Eatough ◽  
H. Falcke ◽  
R. Karuppusamy ◽  
K. J. Lee ◽  
D. J. Champion ◽  
...  

2007 ◽  
Vol 16 (12b) ◽  
pp. 2399-2405 ◽  
Author(s):  
FRANCESC FERRER ◽  
TANMAY VACHASPATI

Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 keV gamma ray line emission from the bulge, which requires an intense source of positrons in the galactic center. These observations are hard to account for by conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma ray background. Here we suggest that light superconducting strings could be the source of the observed 511 keV emission. The associated particle physics, at the ~ 1 TeV scale, is within the reach of planned accelerator experiments, while the distinguishing spatial distribution, proportional to the galactic magnetic field, could be mapped by SPI or by future, more sensitive satellite missions.


1990 ◽  
Vol 140 ◽  
pp. 379-380
Author(s):  
Kazunari Shibata ◽  
Ryoji Matsumoto

Magnetohydrodynamic (MHD) mechanisms producing radio lobes, shells, and filaments in the Galactic center as well as in the gas disk of the Galaxy are studied by using two-dimensional MHD code: (a) the explosion in a magnetized disk, (b) the interaction of a rotating disk with vertical fields, and (c) the nonlinear Parker instability in toroidal magnetic fields in a disk. In all cases, dense shells or filaments are created along magnetic field lines in a transient state, in contrast to the quasi-equilibrium filaments perpendicular to magnetic fields.


1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


1996 ◽  
Vol 169 ◽  
pp. 263-269 ◽  
Author(s):  
E. Serabyn

Ever since the Galactic Center Arc was resolved into its component filaments a decade ago, it has been clear that its linear structure arises from the influence of a strong magnetic field. However, the origin and nature of the contributory phenomena have remained elusive. Since what is seen is synchrotron emission from relativistic particles, of prime interest is a knowledge of the acceleration mechanism involved. Interferometric imaging of the molecular gas in the vicinity of the Arc has now provided a tantalizing clue to the Arc's origin: molecular clumps coinciding with the endpoints of a number of the Arc's filaments point to these clumps as the source of the relativistic particles. This suggests that as dense molecular clumps course through the ambient magnetic field at the Galactic Center, magnetic energy is liberated in their leading layers via field reconnection, precipitating rapid acceleration of free charges to high energy.


2009 ◽  
Vol 5 (S266) ◽  
pp. 482-482
Author(s):  
Xiaoying Pang ◽  
Chenggang Shu

AbstractThe WEBDA database of open clusters (hereafter OCs) in the Galaxy contains 970 OCs, of which 911 have age determinations, 920 have distance measurements, and 911 have color-excess data. Base on the statistical analysis of global properties of open clusters, we investigate disk properties such as the height above the Galactic plane. We find that old open clusters (age ≥ 1 Gyr) are preferentially located far from the Galactic plane with 〈|z|〉~394.5 pc. They lie in the outer part of the Galactic disk. The young open clusters are distributed in the Galactic plane almost symmetrically with respect to the Sun, with a scale height perpendicular to the Galactic plane of 50.5 pc. The age distribution of open clusters can be fit approximately with a two-component exponential decay function: one component has an age scale factor of 225.2 Myr, and the other consists of longer-lived clusters with an age scale of 1.8 Gyr, which are smaller than those derived by Janes & Phelps (1994) of 200 Myr and 4 Gyr for the young and old OCs, respectively. As a consequence of completeness effects, the observed radial distribution of OCs with respect to Galactocentric distance does not follow the expected exponential profile. Instead, it falls off both for regions external to the solar circle and more sharply towards the Galactic Center, which is probably due to giant molecular cloud disruption in the center. We simulate the effects of completeness, assuming that the observed distribution of the number of OCs with a given number of stars above the background is representative of the intrinsic distribution of OCs throughout the Galaxy. Two simulation models are considered, in which the intrinsic number of the observable stars are distributed (i) assuming the actual positions of the OCs in the sample, and (ii) random selection of OC positions. As a result, we derive completeness-corrected radial distributions which agree with an exponential disk throughout the observed Galactocentric distance in the range of 5–15 kpc, with scale lengths in the range of 1.6–2.8 kpc.


1980 ◽  
Vol 5 ◽  
pp. 177-184 ◽  
Author(s):  
J. M. van der Hulst

During the last few years detailed and sensitive observations of the radio emission from the nuclei of many normal spiral galaxies has become available. Observations from the Very Large Array (VLA) of the National Radio Astronomy Observatory (NRAO1), in particular, enable us to distinguish details on a scale of ≤100 pc for galaxies at distances less than 21 Mpc. The best studied nucleus, however, still is the center of our own Galaxy (see Oort 1977 and references therein). Its radio structure is complex. It consists of an extended non-thermal component 200 × 70 pc in size, with embedded therein several giant HII regions and the central source Sgr A (˜9 pc in size). Sgr A itself consists of a thermal source, Sgr A West, located at the center of the Galaxy, and a weaker, non-thermal source, Sgr A East. Sgr A West moreover contains a weak, extremely compact (≤10 AU) source. The radio morphology of several other galactic nuclei is quite similar to that of the Galactic Center, as will be discussed in section 2. Recent reviews of the radio properties of the nuclei of normal galaxies have been given by Ekers (1978a,b) and De Bruyn (1978). The latter author, however, concentrates on galaxies with either active nuclei or an unusual radio morphology. In this paper I will describe recent results from the Westerbork Synthesis Radio Telescope (WSRT, Hummel 1979), the NRAO 3-element interferometer (Carlson, 1977; Condon and Dressel 1978), and the VLA (Heckman et al., 1979; Van der Hulst et al., 1979). I will discuss the nuclear radio morphology in section 2, the luminosities in section 3, and the spectra in section 4. In section 5 I will briefly comment upon the possible implications for the physical processes in the nuclei that are responsible for the radio emission.


1987 ◽  
Vol 115 ◽  
pp. 381-383
Author(s):  
T. Maruyama ◽  
M. Fujimoto

A hydromagnetic model is presented for the bipolar flow of molecular gas from newborn stars and for the radio jet emerging out of active galactic nuclei. We assume a tightly-twisted helical magnetic field in the jet, which can collimate and accelerate the gas along the jet axis. The Lorentz force is also shown to rotate the gas around it.


Sign in / Sign up

Export Citation Format

Share Document