scholarly journals Masses and other parameters of massive binaries

2003 ◽  
Vol 212 ◽  
pp. 91-100 ◽  
Author(s):  
Douglas R. Gies

Binary stars provide us with the means to measure stellar mass. Here I present several lists of known O-type stars with reliable mass estimates that are members of eclipsing, double-lined spectroscopic binaries. The masses of young, unevolved stars in binaries are suitable for testing the predictions of evolutionary codes, and there is good agreement between the observed and predicted masses (based upon temperature and luminosity) if the lower temperature scale from line-blanketed model atmospheres is adopted. A final table lists masses for systems in a wide variety of advanced evolutionary stages.

1982 ◽  
Vol 69 ◽  
pp. 129-131
Author(s):  
E.I. Popova ◽  
A.V. Tutukov ◽  
B.M. Shustov ◽  
L.R. Yungelson

About 60% of stars of the disc population in our Galaxy are close binary systems (CBS). Half of the known CBS are spectroscopic binary stars (Kraitcheva et al., 1978).To know the distribution of a correlation between the masses of CBS components and semiaxes of their orbits is necessary for the investigation of the origin and evolution of CBS. For such statistical investigations, a catalogue of CBS was compiled at the Astronomical Council. The catalogue is based on the 6th Batten catalogue (Batten, 1967), its extensions (Pedoussant and Ginestet, 1971; Pedoussant and Carquillat, 1973) and data published up to the end of 1980 (Popova et al., 1981). Now it is recorded on magnetic tape and contains data on 1041 spectroscopic binaries; 333 of them are stars with two visible spectra. The latter are mostly systems prior to mass exchange and the distribution of physical parameters in these systems reflects the distribution and presumably conditions at the time of formation. Using some assumptions, we can obtain for spectroscopic binaries masses of the components M1 and M2 (or the ratio q = M1/M2) and semiaxes of their orbits. Masses of components with the known sin i were obtained by the usual technique; when sin i was not known, masses were estimated from the spectra. We shall discuss here the distribution of CBS in the M-a plane.


2020 ◽  
Vol 496 (2) ◽  
pp. 1355-1368
Author(s):  
J-L Halbwachs ◽  
F Kiefer ◽  
Y Lebreton ◽  
H M J Boffin ◽  
F Arenou ◽  
...  

ABSTRACT Double-lined spectroscopic binaries (SB2s) are one of the main sources of stellar masses, as additional observations are only needed to give the inclinations of the orbital planes in order to obtain the individual masses of the components. For this reason, we are observing a selection of SB2s using the SOPHIE spectrograph at the Haute-Provence observatory in order to precisely determine their orbital elements. Our objective is to finally obtain masses with an accuracy of the order of one per cent by combining our radial velocity (RV) measurements and the astrometric measurements that will come from the Gaia satellite. We present here the RVs and the re-determined orbits of 10 SB2s. In order to verify the masses, we will derive from Gaia, we obtained interferometric measurements of the ESO VLTI for one of these SB2s. Adding the interferometric or speckle measurements already published by us or by others for four other stars, we finally obtain the masses of the components of five binary stars, with masses ranging from 0.51 to 2.2 solar masses, including main-sequence dwarfs and some more evolved stars whose location in the HR diagram has been estimated.


2020 ◽  
Vol 492 (2) ◽  
pp. 2709-2721
Author(s):  
Luca Piccotti ◽  
José Ángel Docobo ◽  
Roberta Carini ◽  
Vakhtang S Tamazian ◽  
Enzo Brocato ◽  
...  

ABSTRACT The study of a selected set of 69 double-lined spectroscopic binaries (SB2) with well-defined visual and spectroscopic orbits was carried out. The orbital parallax, the mass, the colour, and the luminosity of each component were derived from observational data for almost all of these systems. We have also obtained an independent estimation of the component masses by comparing the colour–magnitude diagram (CMD) to the stellar evolution tracks reported by Pietrinferni. Nearly all of the observational points on the CMD are located between two tracks of slightly different mass or which fall very close to the one corresponding to a unique mass value. The masses obtained from the stellar model are in good agreement with their empirical values determined by parallax techniques (orbital, Gaia, and dynamical). This means that our adopted model is rather reliable and can therefore be used to infer further information, such as the age of each component in the studied systems. Our results indicate a fair correspondence between the age of primaries and secondary stars within 3σ. Nevertheless, we caution that these age indications suffer of uncertainties due to both inhomogeneities/low precision of the adopted photometric data and possible systematics. Finally, it is statistically shown that along with the orbital and trigonometric parallaxes, the dynamical parallax can serve as a reliable tool for distance estimates.


2018 ◽  
Vol 618 ◽  
pp. A177 ◽  
Author(s):  
Thomas Constantino ◽  
Isabelle Baraffe

The precise measurement of the masses and radii of stars in eclipsing binary systems provides a window into uncertain processes in stellar evolution, especially mixing at convective boundaries. Recently, these data have been used to calibrate models of convective overshooting in the cores of main sequence stars. In this study we have used a small representative sample of eclipsing binary stars with 1.25 ≤ M/M⊙ < 4.2 to test how precisely this method can constrain the overshooting and whether the data support a universal stellar mass–overshooting relation. We do not recover the previously reported stellar mass dependence for the extent of overshooting and in each case we find there is a substantial amount of uncertainty, that is, the same binary pair can be matched by models with different amounts of overshooting. Models with a moderate overshooting parameter 0.013 ≤ fos ≤ 0.014 (using the scheme from Herwig et al. 1997, A&A, 324, L81) are consistent with all eight systems studied. Generally, a much larger range of f is suitable for individual systems. In the case of main sequence and early post-main sequence stars, large changes in the amount of overshooting have little effect on the radius and effective temperature, and therefore the method is of extremely limited utility.


1992 ◽  
Vol 135 ◽  
pp. 527-535 ◽  
Author(s):  
H.A. McAlister

AbstractInterferometric arrays possessing sub-milliarcsecond resolution are either about to be fully scientifically productive, as in the case of the Sydney University Stellar Interferometer, or are under various stages of planning and development. The 1990’s will thus witness a hundred–fold gain in resolution over speckle interferometry at the largest telescopes and 5,000 times the resolution of classical direct imaging. Where speckle interferometry can now resolve binary stars with periods of 1 to 2 years, interferometric arrays with baselines of hundreds of meters will resolve binaries with periods of a few hours. Arrays will resolve the majority of the known spectroscopic binaries, providing a substantial increase in the quantity and quality of stellar mass determinations. Surveys for new binaries among the field stars and other restricted samples will be accomplished with unprecedented completeness. The remarkable enhancement in resolution we are about to witness from facilities like SUSI and our own proposed CHARA Array will quite literally revolutionize the field of double and multiple star research.


1993 ◽  
Vol 138 ◽  
pp. 192-196
Author(s):  
L.S. Lyubimkov ◽  
T.M. Rachkovskaya

Duplicity is a very widespread phenomenon among Am-stars. For instance, Abt (1961) investigating 25 such stars found out that 22 of them are spectroscopic binaries. However this important phenomenon is ignored usually in chemical composition investigations of Am-stars. Consequently some “mean” element abundances are determined, which can noticeably differ from real abundances in atmospheres of components. Moreover false chemical anomalies can appear, as shown by the theoretical modelling of spectra of binary stars (Lyubimkov, 1989, 1992). Meanwhile accurate data on chemical composition of Am-stars must be considered as observational test for any hypothesis suggested for explanation of these objects.


1963 ◽  
Vol 18 (2) ◽  
pp. 242-245 ◽  
Author(s):  
W. W. Watson ◽  
A. J. Howard ◽  
N. E. Miller ◽  
R. M. Shiffrin

With an all-metal “swing separator” having unique features, thermal diffusion factors αT for He3/He4 and Ne20Ne22 have been measured with improved accuracy down to average gas temperatures T̅=136°K. For helium αT is 0.0696 ± 0.0010 at 136°K, dropping gradually to 0.0651 ±0.0010 at 313°K. These data, plus measurements by Van der Valk and de Vries at somewhat higher temperatures, agree best with values predicted by an exp-six intermolecular potential with ε/k=9.16 and α=12.7. We are extending these helium measurements down to T=4°K for the lower temperature, to detect if possible quantum corrections to the intermolecular potential. For neon αT increases from 0.0166 ± 0.0010 at 136°K to 0.0233 ± 0.0020 at 310°K, considerably higher than our previously reported values. These T. D. factors for neon are in good agreement with values calculated from an exp-six potential with ε/k = 46.0 ± 0.6 and α=13.


Author(s):  
Bai-Long Hoid ◽  
Martin Hoferichter ◽  
Bastian Kubis

AbstractWe study the reaction $$e^+e^-\rightarrow \pi ^0\gamma $$ e + e - → π 0 γ based on a dispersive representation of the underlying $$\pi ^0\rightarrow \gamma \gamma ^*$$ π 0 → γ γ ∗ transition form factor. As a first application, we evaluate the contribution of the $$\pi ^0\gamma $$ π 0 γ channel to the hadronic-vacuum-polarization correction to the anomalous magnetic moment of the muon. We find $$a_\mu ^{\pi ^0\gamma }\big |_{\le 1.35\,\text {GeV}}=43.8(6)\times 10^{-11}$$ a μ π 0 γ | ≤ 1.35 GeV = 43.8 ( 6 ) × 10 - 11 , in line with evaluations from the direct integration of the data. Second, our fit determines the resonance parameters of $$\omega $$ ω and $$\phi $$ ϕ . We observe good agreement with the $$e^+e^-\rightarrow 3\pi $$ e + e - → 3 π channel, explaining a previous tension in the $$\omega $$ ω mass between $$\pi ^0\gamma $$ π 0 γ and $$3\pi $$ 3 π by an unphysical phase in the fit function. Combining both channels we find $${\bar{M}}_\omega =782.736(24)\,\text {MeV}$$ M ¯ ω = 782.736 ( 24 ) MeV and $${\bar{M}}_\phi =1019.457(20)\,\text {MeV}$$ M ¯ ϕ = 1019.457 ( 20 ) MeV for the masses including vacuum-polarization corrections. The $$\phi $$ ϕ mass agrees perfectly with the PDG average, which is dominated by determinations from the $${\bar{K}} K$$ K ¯ K channel, demonstrating consistency with $$3\pi $$ 3 π and $$\pi ^0\gamma $$ π 0 γ . For the $$\omega $$ ω mass, our result is consistent but more precise, exacerbating tensions with the $$\omega $$ ω mass extracted via isospin-breaking effects from the $$2\pi $$ 2 π channel.


Sign in / Sign up

Export Citation Format

Share Document