XLV.—The Internal and External Fields of a Particle in a Gravitational Field

Author(s):  
G. L. Clark

SummaryThe gravitational field of a system of particles was investigated by de Sitter as far back as 1916. A minor alteration to the analysis was made by Eddington and Clark in 1938. The amended value of the potential g44 is the same as that derived by Einstein, Infeld and Hoffmann without making use of the energy-tensor; this agreement suggests that the revised de Sitter argument is correct. In this paper we show that this is not the case, for the de Sitter analysis completely overlooked any possible interaction terms in the stress components of the energy-tensor. We find the value of these terms, pmn, and show that the agreement mentioned above is due to the fact that the volume integral of pu vanishes.

Author(s):  
Yoshio Matsuki ◽  
Petro Bidyuk

In this research we simulated how time can be reversed with a rotating strong gravity. At first, we assumed that the time and the space can be distorted with the presence of a strong gravity, and then we calculated the angular momentum density of the rotating gravitational field. For this simulation we used Einstein’s field equation with spherical polar coordinates and the Euler’s transformation matrix to simulate the rotation. We also assumed that the stress-energy tensor that is placed at the end of the strong gravitational field reflects the intensities of the angular momentum, which is the normal (perpendicular) vector to the rotating axis. The result of the simulation shows that the angular momentum of the rotating strong gravity changes its directions from plus (the future) to minus (the past) and from minus (the past) to plus (the future), depending on the frequency of the rotation.


2016 ◽  
Vol 41 ◽  
pp. 1660127
Author(s):  
Irina Dymnikova ◽  
Anna Dobosz ◽  
Bożena Sołtysek

We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Alina-Daniela Vîlcu

Using a differential geometric treatment, we analytically derived the expression for De Sitter (geodesic) precession in the elliptical motion of the Earth through the gravitational field of the Sun with Schwarzschild's metric. The expression obtained in this paper in a simple way, using a classical approach, agrees with that given in B. M. Barker and R. F. O'Connell (1970, 1975) in a different setting, using the tools of Newtonian mechanics and the Euler-Lagrange equations.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 127 ◽  
Author(s):  
Yuri N. Obukhov

In the framework of the gauge theory based on the Poincaré symmetry group, the gravitational field is described in terms of the coframe and the local Lorentz connection. Considered as gauge field potentials, they give rise to the corresponding field strength which are naturally identified with the torsion and the curvature on the Riemann–Cartan spacetime. We study the class of quadratic Poincaré gauge gravity models with the most general Yang–Mills type Lagrangian which contains all possible parity-even and parity-odd invariants built from the torsion and the curvature. Exact vacuum solutions of the gravitational field equations are constructed as a certain deformation of de Sitter geometry. They are black holes with nontrivial torsion.


Definitions are proposed for the total momentum vector p α and spin tensor S αβ of an extended body in arbitrary gravitational and electromagnetic fields. These are based on the requirement that a symmetry of the external fields should imply conservation of a corresponding component of momentum and spin. The particular case of a test body in a de Sitter universe is considered in detail, and used to support the definition p β S αβ = 0 for the centre of mass. The total rest energy M is defined as the length of the momentum vector. Using equations of motion to be derived in subsequent papers on the basis of these definitions, the time dependence of M is studied, and shown to be expressible as the sum of two contributions, the change in a potential energy function ϕ and a term representing energy inductively absorbed, as in Bondi’s illustration of Tweedledum and Tweedledee. For a body satisfying certain conditions described as ‘dynamical rigidity’, there exists, for motion in arbitrary external fields, a mass constant m such that M = m + ½ S κ Ω κ + ϕ , where Ω k is the angular velocity of the body and S κ its spin vector.


2016 ◽  
Vol 31 (10) ◽  
pp. 1650050 ◽  
Author(s):  
Nistor Nicolaevici

We consider first-order transition amplitudes in external fields in QED in the expanding de Sitter space and point out that they are gauge dependent quantities. We examine the gauge variations of the amplitudes assuming a decoupling of the interaction at large times, which allows to conclude that the source of the problem lies in the fact that the frequencies of the modes in the infinite future become independent of the comoving momenta. We show that a possibility to assure the gauge invariance of the external field amplitudes is to restrict to potentials which vanish sufficiently fast at infinite times, and briefly discuss a number of options in the face of the possible gauge invariance violation in the full interacting theory.


Sign in / Sign up

Export Citation Format

Share Document