XVII.—The Endodermis in Light-grown and Etiolated Shoots of the Leguminosæ: A Contribution to the Causal Study of Differentiation in the Plant

1935 ◽  
Vol 58 (2) ◽  
pp. 409-425 ◽  
Author(s):  
G. Bond

Twelve years ago Priestley and Ewing (1923) reported that in certain plants, normally showing but little development of stem-endodermis, an extensive formation of this layer could be induced by etiolation. (Note: In this paper the term endodermis is used only when the layer shows characteristic structural features—in the present case the Casparian strip.) A later paper by Priestley (1926) dealt with the same subject. The specified plants with which this result was obtained consisted of four closely related species, namely, Vicia Faba, V. sativa*, Pisum sativum, and Lens esculenta*, and also Solanum tuberosum. (The statements relating to the species marked with an asterisk are based on unpublished work carried out at Leeds, kindly placed at the author's disposal by Professor J. H. Priestley.) In these plants a primary endodermis, though present only at the base of the normal shoot, was described as extending to a considerable height in the etiolated shoot. It was concluded that the absence of endodermis from the greater part of the shoot of these plants, when grown under normal conditions, arises from the inoperation, in the presence of light, of the mechanism forming the Casparian strip.

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2960-2967 ◽  
Author(s):  
Yu Jing Zhang ◽  
Wen Tao Zheng ◽  
Isobel Everall ◽  
J. Peter W. Young ◽  
Xiao Xia Zhang ◽  
...  

Four rhizobia-like strains, isolated from root nodules of Pisum sativum and Vicia faba grown in Anhui and Jiangxi Provinces of China, were grouped into the genus Rhizobium but were distinct from all recognized species of the genus Rhizobium by phylogenetic analysis of 16S rRNA and housekeeping genes. The combined sequences of the housekeeping genes atpD, recA and glnII for strain CCBAU 23252T showed 86.9 to 95 % similarity to those of known species of the genus Rhizobium. All four strains had nodC and nifH genes and could form effective nodules with Pisum sativum and Vicia faba, and ineffective nodules with Phaseolus vulgaris, but did not nodulate Glycine max, Arachis hypogaea, Medicago sativa, Trifolium repens or Lablab purpureus in cross-nodulation tests. Fatty acid composition, DNA–DNA relatedness and a series of phenotypic tests also separated these strains from members of closely related species. Based on all the evidence, we propose a novel species, Rhizobium anhuiense sp. nov., and designate CCBAU 23252T ( = CGMCC 1.12621T = LMG 27729T) as the type strain. This strain was isolated from a root nodule of Vicia faba and has a DNA G+C content of 61.1 mol% (T m).


2020 ◽  
Vol 9 (3) ◽  
pp. 160-170
Author(s):  
Thumadath P.A. Krishna ◽  
Maharajan Theivanayagam ◽  
Gurusunathan V. Roch ◽  
Veeramuthu Duraipandiyan ◽  
Savarimuthu Ignacimuthu

Finger millet is a superior staple food for human beings. Microsatellite or Simple Sequence Repeat (SSR) marker is a powerful tool for genetic mapping, diversity analysis and plant breeding. In finger millet, microsatellites show a higher level of polymorphism than other molecular marker systems. The identification and development of microsatellite markers are extremely expensive and time-consuming. Only less than 50% of SSR markers have been developed from microsatellite sequences for finger millet. Therefore, it is important to transfer SSR markers developed for related species/genus to finger millet. Cross-genome transferability is the easiest and cheapest method to develop SSR markers. Many comparative mapping studies using microsatellite markers clearly revealed the presence of synteny within the genomes of closely related species/ genus. Sufficient homology exists among several crop plant genomes in the sequences flanking the SSR loci. Thus, the SSR markers are beneficial to amplify the target regions in the finger millet genome. Many SSR markers were used for the analysis of cross-genome amplification in various plants such as Setaria italica, Pennisetum glaucum, Oryza sativa, Triticum aestivum, Zea mays and Hordeum vulgare. However, there is very little information available about cross-genome amplification of these markers in finger millet. The only limited report is available for the utilization of cross-genome amplified microsatellite markers in genetic analysis, gene mapping and other applications in finger millet. This review highlights the importance and implication of microsatellite markers such as genomic SSR (gSSR) and Expressed Sequence Tag (EST)-SSR in cross-genome analysis in finger millet. Nowadays, crop improvement has been one of the major priority areas of research in agriculture. The genome assisted breeding and genetic engineering plays a very crucial role in enhancing crop productivity. The rapid advance in molecular marker technology is helpful for crop improvement. Therefore, this review will be very helpful to the researchers for understanding the importance and implication of SSR markers in closely related species.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 789-796 ◽  
Author(s):  
Kyoichi Sawamura ◽  
John Roote ◽  
Chung-I Wu ◽  
Masa-Toshi Yamamoto

Abstract Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic basis of hybrid male sterility more complex than that of hybrid female sterility and inviability? To clarify this point, the D. simulans introgression of the cytological region 34D-36A to the D. melanogaster genome, which causes recessive male sterility, was dissected by recombination, deficiency, and complementation mapping. The 450-kb region between two genes, Suppressor of Hairless and snail, exhibited a strong effect on the sterility. Males are (semi-)sterile if this region of the introgression is made homozygous or hemizygous. But no genes in the region singly cause the sterility; this region has at least two genes, which in combination result in male sterility. Further, the males are less fertile when heterozygous with a larger introgression, which suggests that dominant modifiers enhance the effects of recessive genes of male sterility. Such an epistatic view, even in the less-related species, suggests that the genetic complexity is special to hybrid male sterility.


Sommerfeltia ◽  
2008 ◽  
Vol 31 (1) ◽  
pp. 161-177 ◽  
Author(s):  
U. Peintner

Cortinarius alpinus as an example for morphological and phylogenetic species concepts in ectomycorrhizal fungiExtensive morphological and molecular analyses of closely related species from alpine, subalpine and montane habitats should enable a comparison of ecological, morphological and phylogenetic species concepts in ectomycorrhizal mushrooms. One fundamental question of this study was whether alpine species really exist, and which criteria, besides the specific habitat, could reliably be used for the de-limitation of such taxa. For this reason, 56 rDNA ITS sequences were generated or downloaded from GenBank for 10 closely related species of Cortinarius subgenus Myxacium, section Myxacium. Several collections were sequenced for each of the following taxa: Cortinarius absarokensis, C. alpinus, C. favrei, C. fennoscandicus, C. grallipes, C. mucosus, C. muscigenus, C. septentrionalis, C. trivialis and C. vernicosus. Moreover, spore statistics were carried out for 38 collections of alpine and subalpine taxa. These data provide clear evidence for C. favrei being a synonym of C. alpinus. C. absarokensis and C. alpinus can clearly be delimited based on pileus diameter and average dry weight per basidiome, even in overlapping habitats, but spore size and shape is not a good distinguishing character. Phylograms have very short branches, and base differences between ITS sequences are generally very low in this group, and give no resolution for the included taxa of this section. Based on these results, species concepts of ectomycorrhizal mushrooms are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document